In einer Welt, in der Daten als das neue Gold gelten, ist eine klug konzipierte Datenstrategie entscheidend, um nachhaltige Wettbewerbsvorteile zu erlangen. Eine fundierte Datenstrategie befähigt Unternehmen, aus Daten maximalen Nutzen zu ziehen, indem sie nicht nur operative Prozesse verbessern, sondern auch Grundlagen für zukunftsweisende Innovationen schaffen.

Datenerfassung als Fundament der Datenstrategie

Die Auswahl und Sammlung von Daten ist ein zentraler Bestandteil jeder Datenstrategie. Wichtig ist dabei, dass nicht einfach große Datenmengen gesammelt werden, sondern gezielt solche Daten erfasst werden, die relevant sind und einen Mehrwert bieten können. Unternehmen müssen effektive Techniken zur Datenerfassung entwickeln, die nicht nur die Vielfalt und Volumen der Daten berücksichtigen, sondern auch deren Verlässlichkeit sicherstellen. Automatisierte Datenfeeds, Integration externer Datenquellen und fortlaufende Überprüfung der Datenqualität sind hier essenziell.

Datenmanagement – Herzstück der Datenstrategie

Effektives Datenmanagement organisiert, sichert und optimiert die Nutzung der Daten. Es umfasst Datenarchivierung, -integration und -bereinigung, um eine konsistente Datenbasis zu gewährleisten. Ein robustes Datenmanagement umfasst die Implementierung von Richtlinien für die Datenspeicherung und -zugriff, die Entwicklung von Notfallwiederherstellungsplänen und die Gewährleistung der Einhaltung gesetzlicher Anforderungen. Moderne Datenmanagement-Tools unterstützen die automatische Klassifizierung und Etikettierung von Daten, was eine effiziente Datenverarbeitung und Analyse unterstützt.

Maximierung der Datenanalyse in der Datenstrategie

Der Kern jeder Datenstrategie ist die Umwandlung von Daten in praktische Erkenntnisse. Unternehmen müssen in fortschrittliche Analyseplattformen investieren, die prädiktive Analysen, maschinelles Lernen und Echtzeitdatenverarbeitung unterstützen. Diese Technologien ermöglichen es, tiefere Einblicke in Kundenverhalten, Markttrends und Geschäftsrisiken zu gewinnen. Eine strategisch durchdachte Datenanalyse fördert innovatives Denken und unterstützt datengetriebene Entscheidungsprozesse über alle Unternehmensbereiche hinweg.

Technologie und Infrastruktur – Säulen der Datenstrategie

Eine effektive Datenstrategie erfordert die richtige Auswahl von Technologien und Infrastrukturen, die die Datenanforderungen des Unternehmens unterstützen können. Cloud-basierte Lösungen, Data Lakes und hoch skalierbare Verarbeitungssysteme sind dabei von zentraler Bedeutung. Sie bieten die notwendige Flexibilität und Skalierbarkeit, um große Datenmengen sicher und effizient zu speichern und zu verarbeiten. Die Implementierung von Technologien muss zudem mit einer regelmäßigen Bewertung und Aktualisierung der IT-Sicherheitsmaßnahmen einhergehen, um Datenintegrität und -sicherheit zu gewährleisten.

Datenschutz und Datensicherheit in der Datenstrategie

Datenschutz und Datensicherheit sind kritische Komponenten jeder Datenstrategie. Dies umfasst nicht nur die Einhaltung von Datenschutzgesetzen wie der DSGVO, sondern auch die Implementierung umfassender Sicherheitsprotokolle zum Schutz vor Datenlecks und Cyberangriffen. Verschlüsselung, regelmäßige Sicherheitsaudits und fortlaufende Mitarbeiterfortbildungen zum sicheren Umgang mit Daten sind unerlässlich, um das Vertrauen der Stakeholder zu erhalten und rechtliche Konsequenzen zu vermeiden.

Datenkultur und Kompetenzen – das menschliche Element einer Datenstrategie

Für eine nachhaltige Umsetzung einer Datenstrategie ist eine datengetriebene Unternehmenskultur entscheidend. Dies erfordert, dass alle Mitarbeiter in den Umgang mit Daten geschult sind und den Wert von Daten verstehen. Fortbildungen, Workshops und interne Ressourcen sind nötig, um das Bewusstsein und die Fähigkeiten im Bereich Datenanalyse und -management zu steigern. Eine starke Datenkultur fördert die Akzeptanz und aktive Nutzung von datengesteuerten Methoden im gesamten Unternehmen.

Fazit:

Eine umfassend durchdachte Datenstrategie ist ein dynamischer, essenzieller Bestandteil der modernen Unternehmensführung, der sich ständig weiterentwickeln muss, um mit den schnell fortschreitenden Technologien Schritt zu halten. Durch die strategische Verwaltung und Nutzung ihrer Daten können Unternehmen ihre Effizienz und Innovationsfähigkeit erheblich steigern.


Data Science Services von SIC!

Entwickeln Sie mit unserer Hilfe eine Datenstrategie, um den Geschäftswert Ihrer Daten voll auszuschöpfen. Schaffen Sie eine ganzheitliche Perspektive auf Ihre Datenlandschaft, um Prozesse zu optimieren und fundierte, datenbasierte Entscheidungen zu treffen. Durch die Implementierung einer soliden Datenstrategie kann Ihr Unternehmen nicht nur reaktiver handeln, sondern proaktiv Chancen erkennen und nutzen. So steigern Sie Ihre Innovationskraft, senken Kosten und verschaffen sich entscheidende Wettbewerbsvorteile.

 

Lassen Sie uns gemeinsam Ihre Datenstrategie entwickeln und Ihr Unternehmen auf das nächste Level heben!

zu den Data Science Services

 


Mehr zum Thema

 

Optimierung der Dateninfrastruktur und Datenarchitektur:
Ein umfassender Leitfaden
jetzt lesen

 

Datenkompetenz:
Die Schlüsselqualifikation für die digitale Zukunft
jetzt lesen

 

Datengetriebene Innovation:
Schlüssel zur Sicherung der Wettbewerbsfähigkeit
jetzt lesen

 

Effiziente Datenbereinigung & Datenintegration:
Der Schlüssel zur Datenexzellenz
jetzt lesen

 

Optimierte Entscheidungsfindung durch
Advanced Analytics & Data Modeling:

jetzt lesen

 

Predictive Analytics mit ML und KI:
Prognosen mit Präzision
jetzt lesen

 

Datenvisualisierung und Dashboarding:
Von Daten zu wertvollen Einsichten
jetzt lesen

 


 


In einer Welt, die zunehmend von Technologie durchdrungen ist, spielen digitale Assistenten eine Schlüsselrolle bei der Art und Weise, wie wir mit unseren Geräten interagieren, Aufgaben erledigen und Informationen abrufen. Von sprachgesteuerten Haushaltshelfern bis hin zu hochentwickelten KI-basierten Unternehmenslösungen – die Landschaft der digitalen Assistenten ist vielfältig und entwickelt sich ständig weiter.

Doch was unterscheidet einen KI-Assistenten von einem Sprachassistenten? Wie unterscheidet sich ein GPT-Chatbot von einem herkömmlichen Chatbot? In diesem Blog-Beitrag vergleichen wir die wichtigsten Begriffe, die aktuell in den Medien und im täglichen Business-Alltag verwendet werden.


KI-Assistent

Definition

Ein KI-Assistent ist eine Softwareanwendung, die mithilfe von künstlicher Intelligenz Benutzer bei der Erledigung von Aufgaben oder der Beantwortung von Fragen unterstützen kann. KI-Assistenten nutzen maschinelles Lernen und natürliche Sprachverarbeitung, um auf Benutzeranfragen zu reagieren und relevante Informationen bereitzustellen. Diese Assistenten verbessern die menschlichen Fähigkeiten durch die Verarbeitung natürlicher Sprache, maschinelles Lernen und Datenanalyse, um die Produktivität zu erhöhen, die Entscheidungsfindung zu unterstützen und die Effizienz zu steigern.

Beispiele

Microsoft Copilot, SAP Joule, Amazon Q.

Unterscheidung

KI-Assistenten können spezialisierte Algorithmen oder Modelle verwenden, die auf natürlicher Sprache basieren, um Benutzeranfragen zu verstehen und angemessene Antworten oder Handlungen zu generieren. Sie können auch auf vorgefertigten Datensätzen oder spezifischen Domänen trainiert sein, um ihre Genauigkeit und Relevanz zu verbessern. Im Vergleich zu Chatbots oder virtuellen Assistenten kann ein KI-Assistent spezifischer auf die Unterstützung bei Aufgaben durch den Einsatz von fortgeschrittenen KI-Techniken wie maschinelles Lernen, Natural Language Processing (NLP) und mehr ausgerichtet sein.


Company GPT

Definition

Company GPT ist eine spezielle Version des GPT-Modells (Generative Pre-trained Transformer Modells), das gezielt für die Anwendung in Unternehmen entwickelt wurde. Es ist darauf trainiert, Unternehmensdaten, Fachjargon und spezifische Kontexte zu verstehen und darauf basierend Aufgaben zu erfüllen.

Beispiele

Spezifische GPT-Modelle, die von Unternehmen intern entwickelt wurden und für ihre eigenen Zwecke verwendet werden.

Unterscheidung

Im Gegensatz zu anderen KI-Assistenten oder Chatbots konzentriert sich ein Company GPT weniger auf die allgemeine Funktionalität für Endbenutzer, sondern eher auf die spezifischen Anforderungen und Daten innerhalb eines Unternehmens. Es bietet möglicherweise keine direkte Nutzen-Assoziation in seiner Beschreibung, sondern zielt darauf ab, Unternehmensprozesse effizienter zu gestalten und Geschäftsziele zu erreichen.


Sprachassistent

Definition

Ein Sprachassistent ist eine Softwareanwendung, die menschliche Sprache versteht und darauf basierend Interaktionen durchführt. Die Interaktionen finden typischerweise über Lautsprecher und Mikrofon statt und können Befehle enthalten, um bestimmte Aktionen auszuführen oder Informationen abzurufen.

Beispiele

Amazon Echo mit Alexa, Apple HomePod mit Siri, Google Home mit Google Assistant.

Unterscheidung

Sprachassistenten können sowohl regelbasiert sein, indem sie vordefinierte Befehle oder Skripte ausführen, als auch auf künstlicher Intelligenz basieren, um natürliche Sprache zu verstehen und kontextbezogene Antworten zu generieren. Sie sind in der Regel darauf ausgerichtet, den Benutzern bei verschiedenen Aufgaben und Anfragen zu helfen, sei es das Abspielen von Musik, das Beantworten von Fragen oder das Steuern von Smart-Home-Geräten.


GPT-Chatbot

Definition

Ein GPT-Chatbot ist ein Chatbot, der auf der Generative Pre-trained Transformer (GPT) Technologie basiert. Diese Chatbots verwenden maschinelles Lernen, um auf geschriebenen Text zu reagieren und Unterhaltungen mit Benutzern zu führen. Sie können für eine Vielzahl von Anwendungen eingesetzt werden, von Kundenbetreuung bis hin zur Generierung von Textinhalten.

Beispiele

ChatGPT von OpenAI, DialoGPT von Microsoft, GPT-3-basierte Chatbots auf verschiedenen Plattformen.

Unterscheidung

Im Vergleich zu herkömmlichen Chatbots, die auf vordefinierten Regeln oder Skripten basieren, sind GPT-Chatbots in der Lage, kontextbezogene Antworten zu generieren und natürliche Unterhaltungen zu führen. Sie sind oft flexibler und können eine breitere Palette von Anfragen und Themen behandeln.


Chatbot

Definition

Ein Chatbot ist eine Softwareanwendung, die automatisierte Unterhaltungen mit Benutzern führt, in der Regel über eine Chatbox oder Texteingabe. Diese Unterhaltungen können entweder auf vordefinierten Regeln oder auf künstlicher Intelligenz basieren, um auf die Anfragen der Benutzer zu reagieren

Beispiele

Facebook Messenger Bots, Customer Support Chatbots auf Unternehmenswebsites, virtuelle Assistenten in Apps, automatisierte Support-Chatbots in Messenger-Apps und vieles mehr.

Unterscheidung

Chatbots können regelbasiert sein, basierend auf vordefinierten Skripten oder Algorithmen, oder sie können KI verwenden, um auf natürliche Sprache zu reagieren und sich an die Bedürfnisse der Benutzer anzupassen. Sie sind flexibel einsetzbar und können in verschiedenen Formen und Kontexten auftreten, von einfachen FAQ-Bots bis hin zu komplexen virtuellen Assistenten.


Digital Assistant / Digitaler Assistent

Definition

Ein digitaler Assistent ist eine Softwareanwendung, die dazu entwickelt wurde, Benutzern bei verschiedenen Aufgaben und Anfragen zu helfen. Dies kann von einfachen Informationsabfragen bis hin zur Organisation von Terminen und Aufgaben reichen.

Beispiele

Siri von Apple, Google Assistant von Google, Microsoft Cortana.

Unterscheidung

Digitale Assistenten können verschiedene Formen annehmen, einschließlich sprachgesteuerter Assistenten, Chatbots oder sogar humanoider Roboter. Sie können auf künstlicher Intelligenz basieren, um natürliche Sprache zu verstehen und kontextbezogene Antworten zu generieren, oder sie können auf regelbasierten Systemen beruhen.


Virtual Assistant / Virtueller Assistent

Definition

Ein virtueller Assistent oder Sprachassistent ist ein natürlichsprachliches Dialogsystem, das Anfragen der Benutzer beantwortet und Aufgaben für sie erledigt, in privaten und wirtschaftlichen Zusammenhängen. Er ist auf dem Smartphone ebenso zu finden wie in Unterhaltungsgeräten und in Fahrzeugen.

Beispiele

Bekannte Vertreter sind Sprachassistenten wie Voicebots oder Voice Assistants. Auch Chatbots können als virtuelle Assistenten betrachtet werden.

Unterscheidung

Virtuelle Assistenten können in verschiedenen Kontexten eingesetzt werden, von persönlichen Organisationstools bis hin zu Kundenservice-Plattformen. Sie nutzen oft künstliche Intelligenz, um natürliche Sprache zu verstehen und Aufgaben effizient zu erledigen.


 


Die Entwicklung von eigenen individuellen Sales Tools für das persönliche Verkaufsgespräch stellt Unternehmen vor vielfältige Herausforderungen, von der Sicherstellung der Benutzerfreundlichkeit bis hin zur Integration mit bestehenden Systemen. Von der ersten Konzeptionsphase über die Entwicklung bis hin zur Implementierung ist es entscheidend, dass jedes Element der Software auf die Optimierung des Vertriebsprozesses und die Verbesserung der Interaktion zwischen Vertriebsmitarbeitern und Kunden ausgerichtet ist.

In unseren Kundenprojekten hat sich immer wieder bestätigt, dass die Bildung eines Kernteams ein zentraler Baustein für den Erfolg bei der Entwicklung und Implementierung von Sales Tools ist. Unsere Erfahrung zeigt, dass Sales Tools, die gezielt zur Unterstützung der Vertriebsmitarbeiter im persönlichen Verkaufsgespräch eingesetzt werden, dann am effektivsten sind, wenn sie von einem spezialisierten Kernteam konzipiert und realisiert werden.

Was ist ein Kernteam?

Das Kernteam (oder auch Projektkernteam) ist eine Gruppe von Mitarbeitern, die die Hauptarbeit für den Projektfortschritt trägt und koordiniert. Idealerweise ist es so zusammengesetzt, dass neben der Projektleitung und den späteren Anwendern der Software jeder Funktionsbereich, der direkt oder indirekt am Projekt beteiligt ist, mit mindestens einem Mitarbeiter vertreten ist.

Da sich ein Kernteam aus Mitgliedern mit unterschiedlichen Fähigkeiten und Fachkenntnissen zusammensetzt, ist es in der Lage, die vielfältigen Herausforderungen zu meistern, die bei der Entwicklung einer benutzerfreundlichen und nahtlos in bestehende Systeme integrierbaren Vertriebssoftware auftreten.

Welche Fähigkeiten sollte ein Mitglied des Kernteams mitbringen?

Die Mitglieder des Kernteams zeichnen sich insbesondere durch folgende Eigenschaften aus:

  • Ein ausgeprägtes Interesse am Unternehmen sowie ein tiefes Verständnis für die Zusammenhänge zwischen den betrieblichen Prozessen und der Organisationsstruktur.
  • Die Fähigkeit, eigene Ideen und Sichtweisen einzubringen.
  • Hohe Lernbereitschaft und Offenheit für neue Ideen und Veränderungen.
  • Ein gutes Netzwerk innerhalb und außerhalb des Teams, einschließlich der Pflege von Kontakten zu anderen Abteilungen.
  • Ein hohes Maß an Professionalität und Engagement für den eigenen Arbeitsbereich mit dem ständigen Streben nach Verbesserung.
  • Die Bereitschaft, konstruktive Kritik anzunehmen und daraus zu lernen, um sich persönlich und beruflich weiterzuentwickeln.
  • Ein starkes Engagement für das Wohl des Unternehmens, das über persönliche Ambitionen oder die eigene Profilierung hinausgeht.

Die praktische Umsetzung dieser Strategie in unseren Kundenprojekten hat zu hervorragenden Ergebnissen geführt. Speziell für die Entwicklung von Vertriebssoftware zusammengestellte Teams haben Lösungen geschaffen, die nicht nur die Effizienz und Effektivität der Vertriebsmitarbeiter im direkten Kundenkontakt steigern, sondern auch signifikant zur Umsatzsteigerung beitragen. Durch die enge Zusammenarbeit im Kernteam und die Nutzung von Spezialwissen in allen Phasen der Entwicklung konnte sichergestellt werden, dass die entwickelten Tools genau auf die Bedürfnisse und Anforderungen der Endanwender zugeschnitten sind.

Daher ist die Bildung eines Kernteams nicht nur ein Schritt in der Entwicklung von Vertriebssoftware, sondern eine bewährte Strategie, die unseren Kunden hilft, ihre Vertriebsziele zu erreichen und den Verkaufsprozess nachhaltig zu verbessern. Grundvoraussetzung für die erfolgreiche Arbeit des Kernteams ist allerdings, dass das Team von Anfang an durch ein hohes Maß an Vertrauen in seine Entscheidungen, insbesondere von Seiten der Geschäftsleitung, unterstützt wird.

Vorteile beim Einsatz eines Kernteams in Vertriebssoftware-Projekten

 

  1. Expertise und Fokus:

Ein Kernteam vereint Experten aus unterschiedlichen Bereichen – von Softwareentwicklern über Vertriebsspezialisten bis hin zu Projektmanagern. Diese gebündelte Expertise ermöglicht es dem Team, sich intensiv mit den spezifischen Anforderungen des Vertriebs auseinanderzusetzen und Lösungen zu entwickeln, die genau auf diese Bedürfnisse zugeschnitten sind.

  1. Agilität und Anpassungsfähigkeit:

Das Entwicklungsumfeld für Vertriebssoftware ist oft schnelllebig und erfordert eine flexible Herangehensweise. Ein Kernteam kann schnell auf Veränderungen reagieren, sei es aufgrund von Feedback aus dem Vertrieb, technologischen Innovationen oder veränderten Marktanforderungen.

  1. Kommunikation und Koordination:

Eng abgestimmte Kommunikationswege innerhalb des Kernteams erleichtern eine effiziente Koordination der Entwicklungsarbeit. Dies ist besonders wichtig, wenn es darum geht, komplexe Integrationsaufgaben mit bestehenden CRM- oder ERP-Systemen zu bewältigen und sicherzustellen, dass alle Komponenten reibungslos zusammenarbeiten.

  1. Qualitätssicherung und Benutzererfahrung:

Ein Kernteam kann kontinuierlich die Qualität der Software überprüfen und sicherstellen, dass die Benutzererfahrung im Mittelpunkt steht. Durch regelmäßiges Testing und die Einbeziehung von Endnutzern in den Entwicklungsprozess kann das Team sicherstellen, dass die Software intuitiv zu bedienen ist und den Vertriebsmitarbeitern einen echten Mehrwert bietet.

  1. Strategische Ausrichtung und Vision:

Die Entwicklung von Vertriebssoftware ist nicht nur eine technische, sondern auch eine strategische Aufgabe. Das Kernteam trägt die Vision des Projekts und sorgt dafür, dass die Softwareentwicklung mit den übergeordneten Geschäftszielen des Unternehmens im Einklang steht. Dies umfasst auch die Anpassung an zukünftige Wachstumspläne und die Skalierbarkeit der Lösung.

  1. Identifizierung und Lösung von Problemen:

Während des Entwicklungsprozesses können unvorhergesehene Probleme auftreten, sei es in technischer, organisatorischer oder konzeptioneller Hinsicht. Ein Kernteam ist in der Lage, solche Probleme frühzeitig zu identifizieren und effektive Lösungen zu entwickeln, um den Entwicklungsprozess auf Kurs zu halten.

Durch die Bildung eines Kernteams kann ein Unternehmen die Entwicklung einer Vertriebssoftware so gestalten, dass sie nicht nur den aktuellen Anforderungen gerecht wird, sondern auch eine solide Basis für zukünftige Erweiterungen und Verbesserungen bietet. Dieses strategische Vorgehen stellt sicher, dass die Software den Vertriebsprozess optimal unterstützt, die Produktivität steigert und letztendlich zum Geschäftserfolg beiträgt.


Individuelles digitales Sales Tool

Übrigens: Unsere „Sales Tool Manufaktur“ erstellt individuelle, maßgeschneiderte Software-Lösungen für das persönliche Kundengespräch. Ein Sales Tool aus unserer Sales Tool Manufaktur bietet viele Vorteile, mit denen Sie den Erfolg Ihrer Vertriebsmannschaft steigern können. Mehr Info

Interesse?

Gerne stehen wir Ihnen für ein unverbindliches Beratungsgespräch zur Verfügung. Kontakt

 


 

Im Bereich des Vertriebs erlangen Digitalisierungsprojekte zunehmend an Bedeutung und stellen Unternehmen vor eine Vielzahl von Herausforderungen, die bewältigt werden müssen, um eine erfolgreiche Umsetzung zu gewährleisten. Besonders in der Anfangsphase stehen organisatorische Fragen im Vordergrund, die es zu klären gilt. Diese bilden die Grundlage dafür, dass alle Ebenen des Unternehmens schrittweise in den Digitalisierungsprozess eingebunden werden können.

Unser Sales-Manager für Sales- und Businesslösungen, Thomas Bätz, hat 10 entscheidende Bausteine identifiziert, die für den Erfolg von Digitalisierungsprojekten im Vertrieb von entscheidender Bedeutung sind. Diese Bausteine werden von ihm in einer Video-Serie mit dem Titel „Die 10 Erfolgsbausteine für Digitalisierung im Vertrieb“ vorgestellt. In diesen Videos werden wichtige Aspekte und Schritte erläutert, die Unternehmen dabei helfen, ihre Vertriebsprozesse erfolgreich zu digitalisieren und somit wettbewerbsfähig zu bleiben. Damit werden nicht nur die organisatorischen Grundlagen gelegt, sondern auch praktische Anleitungen und Einblicke geboten, um die Herausforderungen der digitalen Transformation im Vertrieb effektiv zu bewältigen.

 


Die 10 Erfolgsbausteine für Digitalisierung im Vertrieb

 

In der ersten Folge legen wir den Grundstein für das Verständnis der Digitalisierung im Vertrieb. Entdecken Sie, was Digitalisierung wirklich bedeutet und wie Sie diesen Prozess in Ihrem Unternehmen erfolgreich umsetzen können.

Digitalisierungsprojekte im Vertrieb umsetzen: Für die erfolgreiche Umsetzung von Digitalisierungsprojekten im Vertrieb sind im Unternehmen mehrere Herausforderungen zu bewältigen. In der Startphase sind vor allem die Fragen auf der organisatorischen Ebene zu lösen. Diese sind die Grundlage damit es gelingt, alle Ebenen des Unternehmens schrittweise einzubinden. Wir haben 10 Bausteine identifiziert, die für den Erfolg von Digitalisierungsprojekten im Vertrieb entscheidend sind.

🔍 In dieser Folge erfahren Sie:

  • Eine klare Definition von Digitalisierung im Vertriebskontext
  • Verschiedene Aspekte der Digitalisierung, von CRM-Systemen bis hin zu sozialen Medien
  • Die Bedeutung einer individuellen Herangehensweise an die Digitalisierung
  • Einführung in die zehn Schlüsselbausteine für erfolgreiche digitale Vertriebsprojekte

📈 Warum ist diese Folge wichtig?

Die Digitalisierung des Vertriebs ist ein entscheidender Schritt für moderne Unternehmen. Thomas Bätz bietet einen umfassenden Überblick und praktische Einblicke, um Ihnen den Einstieg in diesen Prozess zu erleichtern.

Hier geht’s zum Video


Aufbau eines Kernteams für digitalen Vertriebserfolg

 

In der zweiten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz konzentrieren wir uns auf den ersten der zehn identifizierten Erfolgsbausteine: die Bildung eines effektiven Kernteams für digitale Vertriebsprojekte. Entdecken Sie, wie Sie das richtige Team zusammenstellen und welche Rolle es im Erfolg Ihres Projekts spielt.

🔍 In dieser Folge erfahren Sie:

  • Was ein Kernteam im Kontext des digitalen Vertriebs ist
  • Die Schlüsselqualifikationen und Verantwortlichkeiten eines erfolgreichen Kernteams
  • Wie Sie das Kernteam strategisch aufbauen und einsetzen
  • Die Bedeutung der Teamzusammenstellung für den Projekterfolg

📈 Warum ist diese Folge wichtig?

Ein gut strukturiertes Kernteam ist entscheidend für den Erfolg digitaler Vertriebsprojekte. Thomas Bätz gibt Einblicke in die Auswahl und Führung eines solchen Teams und wie es zur Realisierung Ihrer Unternehmensvision beiträgt.

Hier geht’s zum Video


Entwicklung einer Umsetzungsstrategie für digitale Vertriebsprojekte

 

In der dritten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz, fokussieren wir uns auf den zweiten Erfolgsbaustein: die Entwicklung einer effektiven Umsetzungsstrategie für digitale Vertriebsprojekte. Erfahren Sie, wie Sie eine maßgeschneiderte Strategie für Ihr Unternehmen entwickeln und umsetzen.

🔍 In dieser Folge lernen Sie:

  • Die Bedeutung einer maßgeschneiderten Umsetzungsstrategie im digitalen Vertrieb
  • Wie Sie eine Vision und konkrete Ziele für Ihr digitales Projekt definieren
  • Die Schritte zur Erreichung Ihrer Projektziele
  • Die Wichtigkeit der Einbindung aller relevanten Abteilungen und Mitarbeiter

📈 Warum ist diese Folge wichtig?

Eine gut durchdachte Umsetzungsstrategie ist der Schlüssel zum Erfolg Ihres digitalen Vertriebsprojekts. Thomas Bätz erklärt, wie Sie eine Strategie entwickeln, die speziell auf die Bedürfnisse und Ziele Ihres Unternehmens zugeschnitten ist.

Hier geht’s zum Video


Zielgruppenauswahl und Produktfokus in der Digitalisierung des Vertriebs

 

In der vierten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz konzentrieren wir uns auf die strategische Auswahl von Zielgruppen und Produkten für den digitalen Vertrieb. Erfahren Sie, wie Sie die richtigen Kunden und Produkte für den Start Ihrer Digitalisierungsinitiative auswählen.

🔍 In dieser Folge lernen Sie:

  • Die Bedeutung der zielgerichteten Auswahl von Kunden und Produkten für den digitalen Vertrieb
  • Unterschiede zwischen der ‚Big Bang‘-Methode und einem fokussierten, schrittweisen Ansatz
  • Wie Sie durch eine schmale, vertikale Ausrichtung schnell spürbare Erfolge erzielen
  • Die Wichtigkeit der Datenerfassung und -nutzung in Ihrem digitalen Vertriebsprojekt

📈 Warum ist diese Folge wichtig?

Die richtige Auswahl von Zielgruppen und Produkten ist entscheidend für den Erfolg Ihrer Digitalisierungsstrategie. Thomas Bätz gibt wertvolle Einblicke in die effektive Planung und Umsetzung dieser Strategie.

Hier geht’s zum Video


Gesprächsmodell & Argumentationsketten

 

In der fünften Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz tauchen wir in die praktische Anwendung der Digitalisierung im Vertrieb ein. Anhand eines konkreten Kundenbeispiels erfahren Sie, wie vertriebliche Aufgaben digital unterstützt werden können, insbesondere im Bereich von Cross- und Upselling.

🔍 In dieser Folge lernen Sie:

  • Wie digitale Lösungen Service-Mitarbeiter im Vertrieb unterstützen können
  • Die Herausforderungen bei der Umwandlung von Servicegesprächen in Verkaufsgespräche
  • Die Entwicklung von Argumentationsketten und Gesprächsmodellen für effektives Verkaufen
  • Die Bedeutung von Workshops und Pilotprojekten bei der Implementierung digitaler Vertriebsstrategien

📈 Warum ist diese Folge wichtig?

Die Digitalisierung bietet neue Möglichkeiten, Vertriebsaufgaben zu optimieren und effektiver zu gestalten. Thomas Bätz zeigt auf, wie Sie digitale Tools nutzen können, um Ihre Vertriebsstrategie zu verbessern und erfolgreicher zu machen.

Hier geht’s zum Video


Technische Umsetzung & Projektstart

 

In der sechsten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz widmen wir uns der technischen Umsetzung und dem optimalen Startzeitpunkt für digitale Vertriebsprojekte. Erfahren Sie, wie Sie die technischen Aspekte Ihres Digitalisierungsprojekts effektiv planen und umsetzen.

🔍 In dieser Folge lernen Sie:

  • Wichtige Überlegungen zur technischen Umsetzung Ihres digitalen Vertriebsprojekts
  • Die Integration von digitalen und analogen Workflows
  • Die Bedeutung der Verknüpfung neuer Systeme mit bestehenden Systemen
  • Warum ein sofortiger Projektstart entscheidend ist und wie Sie ihn erfolgreich gestalten

📈 Warum ist diese Folge wichtig?

Die technische Umsetzung ist ein kritischer Schritt in jedem Digitalisierungsprojekt. Thomas Bätz erklärt, wie Sie die technischen Herausforderungen meistern und Ihr Projekt effizient starten können.

 Hier geht’s zum Video


Erfolgreiche Datenpflege und Datenbeschaffung im Vertrieb: Schlüssel zum Projekterfolg

 

In der siebten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz tauchen wir tief in das Thema Datenpflege und Datenbeschaffung ein, ein entscheidender Erfolgsbaustein für jedes Vertriebsprojekt. Erfahren Sie, warum diese Aspekte oft unterschätzt werden und wie sie dennoch den Grundstein für den Erfolg Ihrer Projekte legen können.

🔍 In dieser Folge lernen Sie:

  • Die Bedeutung von Datenpflege und -beschaffung im Vertriebskontext
  • Warum diese Themen oft als „heißes Eisen“ betrachtet werden
  • Praktische Tipps, um Daten effektiv zu managen und Projekte voranzutreiben
  • Wie Sie durch aktuelle Daten zu besseren Vertriebsinformationen und -ergebnissen gelangen

📈 Warum ist diese Folge wichtig?

Viele Projekte scheitern oder erleiden Verzögerungen, weil die Wichtigkeit von Datenpflege und -beschaffung unterschätzt wird. Thomas Bätz erläutert, wie Sie diesen Herausforderungen begegnen und Ihre Projekte zum Erfolg führen können.

Hier geht’s zum Video


Klein anfangen und Vertrauen aufbauen: Schlüssel zum Digitalisierungserfolg

 

In der achten und letzten Folge unserer Videoreihe „Digitalisierung im Vertrieb“ mit Thomas Bätz konzentrieren wir uns auf die beiden letzten Erfolgsbausteine: „Klein anfangen“ und „Vertrauen aufbauen“. Erfahren Sie, warum diese Elemente entscheidend für den Erfolg Ihrer Digitalisierungsprojekte sind.

🔍 In dieser Folge lernen Sie:

  • Die Vorteile des „Klein Anfangens“ in Digitalisierungsprojekten
  • Wie Sie durch das Setzen kleiner Ziele schnelle Erfolge erzielen
  • Die Bedeutung des Vertrauensaufbaus, insbesondere von der Geschäftsleitung zum Kernteam
  • Wichtige Aspekte wie Ressourcenfreigabe, Zeitbudgetierung und aktive Unterstützung

📈 Warum ist diese Folge wichtig?

Ein erfolgreicher Start und die kontinuierliche Unterstützung sind entscheidend für den Erfolg von Digitalisierungsprojekten. Thomas Bätz betont, wie wichtig es ist, mit überschaubaren Schritten zu beginnen und das Vertrauen aller Beteiligten zu gewinnen.

Hier geht’s zum Video


Individuelles digitales Sales Tool

Übrigens: Unsere „Sales Tool Manufaktur“ erstellt individuelle, maßgeschneiderte Software-Lösungen für das persönliche Kundengespräch. Ein Sales Tool aus unserer Sales Tool Manufaktur bietet viele Vorteile, mit denen Sie den Erfolg Ihrer Vertriebsmannschaft steigern können.

Mehr Info

Interesse?

Gerne stehen wir Ihnen für ein unverbindliches Beratungsgespräch zur Verfügung.

Kontakt

 


 


Stellen Sie sich folgende Situation vor: Sie sind Außendienst-Mitarbeiter und führen gerade ein Verkaufsgespräch bei einem Kunden. Plötzlich fragt Sie der Kunde nach einer detaillierten technischen Spezifikation eines bestimmten Bauteils, die aus den Verkaufsunterlagen nicht ersichtlich ist und die Sie auch nicht kennen können. Die Antwort ist aber entscheidend dafür, ob der Kunde kauft oder nicht. Normalerweise würden Sie jetzt in den technischen Datenblättern, die Sie im Idealfall in digitaler Form auf Ihrem Tablet PC haben, nach der entsprechenden Information suchen oder einen Kollegen anrufen, der sich damit auskennt. Beides ist zeitaufwändig und umständlich und das Ergebnis ist ungewiss.

Bei einigen Unternehmen, die technologisch auf dem neuesten Stand sind, müssen die Außendienstmitarbeiter in einer solchen Situation ihre Frage nur noch in ein Chatfenster auf ihrem Tablet-PC eingeben und erhalten die gewünschten Informationen innerhalb weniger Sekunden. Denn sie können sich bei Bedarf von einem digitalen KI-Assistenten unterstützen lassen. Das bedeutet nicht nur eine enorme Zeitersparnis, sondern auch eine deutliche Verbesserung der Beratungsqualität und damit des Verkaufserfolgs.

Jetzt denken Sie vielleicht: Aha, die benutzen also ChatGPT, das könnten wir doch eigentlich auch machen. Aber ganz so einfach ist es leider nicht, und zwar aus einem ganz einfachen Grund: ChatGPT hat (zum Glück) keinen Zugriff auf Ihre Firmendaten und kann daher auch keine firmenspezifischen Fragen beantworten, sondern nur allgemein zugängliche Informationen liefern.

Was ist ChatGPT?

ChatGPT ist ein hochentwickeltes KI-System, das darauf ausgelegt ist, menschliche Sprache zu verstehen und in einem natürlichen, menschenähnlichen Stil zu reagieren. Dies wird durch den Einsatz von maschinellem Lernen (ML) erreicht, wobei die KI auf einer umfangreichen Datenbasis trainiert wird. Die Abkürzung GPT im Namen ChatGPT steht für „Generative Pretrained Transformer“. ChatGPT kann Text generieren, Fragen beantworten, Texte zusammenfassen, Empfehlungen geben und kreativ sein. Es lernt kontinuierlich dazu, indem es Muster in Sprachdaten erkennt und diese Informationen zur Verbesserung seiner Antworten nutzt.

Übersicht ChatGPT Versionen

Chat GPT im Unternehmen einsetzen

Diese Fähigkeit, den Kontext zu verstehen und darauf zu reagieren, kann ChatGPT tatsächlich zu einem wertvollen Werkzeug für Unternehmen machen. Doch Vorsicht: Die Nutzung öffentlicher KI-Modelle wie ChatGPT, Bing AI, Google Bard etc. zur Unterstützung der Arbeit im Unternehmenskontext birgt auch erhebliche Risiken. Denn sobald Mitarbeiter unternehmensspezifische Fragen an öffentliche Chat-Modelle stellen, geben sie faktisch Geschäftswissen an die KI weiter. Denn die Fragen und Antworten werden als Trainingsdaten zur kontinuierlichen Verbesserung genutzt und stehen damit allen Nutzern öffentlich zur Verfügung. Als ChatGPT Anfang des Jahres für die allgemeine Nutzung freigegeben wurde, hatte ein Fall für Aufsehen gesorgt, bei dem Mitarbeiter der Firma Samsung die neue Technologie zur Unterstützung ihrer Arbeit genutzt hatten, ohne sich über die Konsequenzen Gedanken zu machen. Vereinzelt hatten Mitarbeiter vertrauliche Daten in ChatGPT eingegeben, z.B. Quellcode von proprietären Anwendungen zum Debuggen oder geheime interne Besprechungsnotizen, um daraus mit Hilfe von ChatGPT Präsentationen zu erstellen. Um solche Fälle zu verhindern, haben viele namhafte Unternehmen, wie z.B. die Deutsche Bank oder Goldman Sachs, ihren Mitarbeitern die geschäftliche Nutzung von ChatGPT generell untersagt.

Inzwischen hat OpenAI, die Betreiberfirma von GPT, jedoch auf dieses Problem reagiert und bietet Unternehmen spezielle Enterprise-Abonnements an, bei denen – neben einigen zusätzlichen weiteren Features – der Rückfluss der Fragen und Antworten in die allgemein zugänglichen Trainingsdaten unterbunden wird. Das zweite Problem bei der Nutzung von ChatGPT für Aufgaben im Unternehmensalltag ist damit aber noch nicht gelöst: die Trainingsdaten. ChatGPT wird mit öffentlich zugänglichen Daten trainiert. Damit kann ChatGPT keine unternehmensspezifischen Fragen beantworten, da ihm dafür die Wissensbasis fehlt. Inzwischen bietet OpenAI aber auch für dieses Problem eine Lösung an, die sogenannten „Custom GPTs“.

Custom GPTs: Individuelle KI-Assistenten selbst erstellen

Custom GPTs („benutzerdefinierte“ GPTs) sind angepasste ChatGPT-Versionen, die Spezialfähigkeiten mitbringen und sich gezielt auf diese konzentrieren. Seit November 2023 ist es für Plus- und Enterprise-Kunden möglich, sich mit Custom GPTs eigene KI-Assistenten für bestimmte Einsatzzwecke zu bauen. Relativ einfach und ohne Programmierkenntnisse können zusätzliche Anweisungen, eigene Expertise und weitere Fähigkeiten in ChatGPT integriert und so eigene KI-Assistenten erstellt werden, die dann jeweils auf bestimmte Aufgaben spezialisiert sind. Der KI-Assistenten schlüpft dabei in eine bestimmte Rolle und erhält spezielle Expertise.

Open AI hat bereits einige Beispiele für benutzerdefinierte GPTs veröffentlicht, die von jedermann frei genutzt werden können, wie z.B. „Data Analysis“, das Daten aus beliebigen Dateien analysiert und visualisiert, oder „Tech Support Advisor“, das bei der Lösung von Problemen mit technischen Geräten hilft.

Anleitung - Custom GPTs mit ChatGPT erstellen

Custom GPTs sind jedoch nicht wie die von OpenAI automatisch für alle ChatGPT-Nutzer nutzbar, sondern der Ersteller eines Custom GPT kann selbst entscheiden, ob sein KI-Assistenten öffentlich oder nur privat verfügbar sein soll. Auf diese Weise kann verhindert werden, dass Unbefugte über Custom GPTs, die für Unternehmenszwecke erstellt wurden, Zugang zu sensiblen Daten und vertraulichen Informationen erhalten. Darüber hinaus kann der Ersteller eines benutzerdefinierten GPTs festlegen, dass Chats mit seinem GPT nicht für die Verbesserung und das Training von Open-AI-Modellen verwendet werden dürfen. Damit wird verhindert, dass durch die Nutzung des Chats sensible Unternehmensdaten und spezielles Know-how in das öffentliche ChatGPT-Modell zurückfließen.

Grundsätzlich kann also jeder Mitarbeiter eines Unternehmens mit einem ChatGPT Plus-Abonnement seine eigenen individuellen KI-Assistenten erstellen, die ihn bei seinen täglichen Aufgaben unterstützen und entlasten. Er kann die von ihm erstellten KI-Assistenten auch seinen Kollegen zur Verfügung stellen, sofern diese ebenfalls über ein ChatGPT Plus-Abonnement verfügen. Hier besteht insbesondere mit zunehmender Unternehmensgröße die Gefahr von vielen verteilten Insellösungen und unkontrolliertem Wildwuchs. Für kleine Unternehmen stellen Custom GPTs sicherlich eine gute Möglichkeit dar, mit individuellen KI-Assistenten die Produktivität zu verbessern. Mit zunehmender Unternehmensgröße wird es aber sicherlich sinnvoller und erfolgversprechender sein, die für die verschiedenen Einsatzszenarien benötigten KI-Assistenten zentral von spezialisierten Mitarbeitern erstellen, verwalten und kontinuierlich optimieren zu lassen und diese dann allen Mitarbeitern zur Verfügung zu stellen. Auch hierfür bietet ChatGPT mittlerweile eine Lösung an, die „Assistants API“.

Mit Assistants API ein individuelles Firmen-GPT erstellen

Mit der Assistants API können individuelle KI-Assistenten, die spezialisierte Aufgaben übernehmen und das Know-how des Unternehmens nutzen, so in die von den Mitarbeitern genutzten Anwendungen und Tools integriert werden, dass sie im jeweiligen Kontext zur Verfügung stehen und ggf. auch bestimmte Aufgaben direkt ausführen können. Dies hat auch den Vorteil, dass die Mitarbeiter hierfür kein ChatGPT Plus Abonnement benötigen. Am Ende kann ein maßgeschneidertes, unternehmensspezifisches GPT stehen, dessen spezialisierte KI-Assistenten Verbesserungen in vielen Bereichen wie Vertrieb, Verwaltung, Produktentwicklung, Kundensupport oder Qualitätskontrolle bewirken können. Die Integration individueller KI-Assistenten in Unternehmensprozesse kann innerhalb natürlicher Grenzen die Produktivität und Effizienz steigern, Kosten senken und die Kundenzufriedenheit erhöhen. Letztlich hängt der Nutzen von KI-Assistenten zwar einerseits von den zur Verfügung gestellten Ideen, Anweisungen, Dateien und Fähigkeiten ab, andererseits aber auch wesentlich von der Qualität der Daten und Informationen, die dem KI-Assistenten zur Verfügung stehen.

Individuelle KI-Assistenten mit Amazon Q

Amazon Q ist ein generativer KI-basierter Assistent, der für den geschäftlichen Einsatz entwickelt wurde und speziell an die Bedürfnisse eines Unternehmens angepasst werden kann. Es nutzt Daten und Fachwissen aus den vorhandenen Ressourcen eines Unternehmens, einschließlich Informationsdatenbanken, Code und Unternehmenssystemen, um schnell relevante Antworten zu liefern, Probleme zu lösen, Inhalte zu generieren und bei der Entscheidungsfindung zu helfen. Amazon Q unterstützt über 40 integrierte Konnektoren, die die Integration mit einer Vielzahl von Unternehmensdaten und -systemen ermöglichen. Es ist besonders nützlich für Geschäftsanwender in verschiedenen Rollen, einschließlich Marketing, Projektmanagement und Vertrieb, und bietet maßgeschneiderte Konversationen und Lösungen auf der Grundlage eines autorisierten Zugriffs auf Informationen.

Amazon Q ist auch auf Anfragen im Zusammenhang mit AWS spezialisiert und bietet Einblicke in Muster des AWS Well-Architected Frameworks, Best Practices und Lösungsimplementierungen. Es integriert sich in Amazon QuickSight für Business Intelligence-Aufgaben und verbessert die Produktivität durch Generative BI-Fähigkeiten. In Amazon Connect unterstützt es Kundenbetreuer, indem es Echtzeitgespräche und Unternehmensinhalte nutzt, um Antworten und Handlungsempfehlungen zu geben. Darüber hinaus wird es in Kürze in AWS Supply Chain verfügbar sein und intelligente Antworten und Szenarioanalysen für das Supply Chain Management liefern.

Zu den Hauptfunktionen von Amazon Q gehören die Rationalisierung alltäglicher Aufgaben, das Verstehen von Unternehmensinformationen, die Personalisierung von Interaktionen auf der Grundlage von Benutzerrollen und -berechtigungen sowie die Einhaltung hoher Sicherheits- und Datenschutzstandards.

Datenqualität entscheidend für KI-Assistenten

In diesem Zusammenhang ist die Datenqualität von entscheidender Bedeutung, insbesondere wenn mit eigenen Dokumenten gearbeitet werden soll. Hier gibt es viele potentielle Fallstricke. Selbst bei PDF-Dokumenten, von denen man annehmen könnte, dass sie problemlos verwendet werden können, treten häufig Detailprobleme auf. Denn auch PDF-Dokumente werden letztlich nur in Text umgewandelt. Dies ist insbesondere bei Tabellen und Bildern problematisch und führt nicht immer zu befriedigenden Ergebnissen. Daher ist es besonders wichtig, die Qualität der Daten sicherzustellen. Dies geschieht am besten durch automatisierte Prozesse, die die Daten prüfen und gegebenenfalls überarbeiten. Hierfür gibt es jedoch keine Lösungen, die direkt „out of the box“ funktionieren, sondern die Prozesse und Automatismen müssen immer spezifisch an den individuellen Kontext des jeweiligen KI-Assistenten angepasst werden. Hier können unsere KI-Spezialisten bei Bedarf mit ihrem Know-how und ihrer Erfahrung unterstützen.

Damit Ihre KI-Assistenten optimal in Ihre Unternehmensprozesse integriert werden und die Datenqualität auf höchstem Niveau bleibt, bieten wir Ihnen unsere fachliche Unterstützung an. Unsere Experten entwickeln für Sie maßgeschneiderte Lösungen, die speziell auf Ihre Bedürfnisse und Anforderungen zugeschnitten sind.

Kontaktieren Sie uns für eine individuelle Beratung und erfahren Sie, wie wir Sie bei der Implementierung und Optimierung Ihrer KI-Assistenten unterstützen können. Wir freuen uns auf Sie!

 


Weitere Infos & Quellen:

Introducing ChatGPT

Introducing GPTs

Creating a GPT

GPTs FAQ

Assistants API

Amazon Q – AWS

 


 


Stellen Sie sich vor, Sie befinden sich in einer riesigen Fabrikhalle und können dort von jedem beliebigen Objekt, wie z.B. Palettenbehältern, Produktionsteilen, Werkzeugen, usw.  jederzeit den aktuellen Standort auf Ihrem Smartphone sehen und dorthin navigieren. Dies ist kein Zukunftsszenario mehr, sondern dank der Indoor-Positionierung bereits Realität. Diese Technologie ermöglicht es, Objekte oder Personen innerhalb von Gebäuden genau zu lokalisieren – ein Bereich, in dem das klassische GPS aufgrund fehlender Satellitensignale oft versagt. Besonders im Kontext von IoT (Internet of Things) wird Indoor-Positionierung immer relevanter. Hier können Ortungstechnologien dazu beitragen, effizientere Abläufe zu gestalten, Nutzererfahrungen zu verbessern und neue Anwendungsfälle zu ermöglichen.

Es gibt verschiedene Ortungstechnologien, die für die Indoor-Positionierung geeignet sind und die je nach erforderlicher Genauigkeit (Granularität), Kosten und Zuverlässigkeit besser oder schlechter für den jeweiligen Einsatzzweck im IoT-Projekt passen können. Im Folgenden stellen wir die 4 wichtigsten Ortungstechnologien für die Indoor-Positionierung vor.

 

RFID Tracking

Die Technologie, bekannt als „Radio Frequency Identification“ oder RFID ist in Bereichen wie Warenlagern, Bibliotheken und im Einzelhandel bereit sehr weit verbreitet. Der Name selbst leitet sich von der Art und Weise ab, wie diese Technologie funktioniert: Durch die Identifizierung mittels Radiowellen. RFID nutzt elektromagnetische Felder, um automatisch Informationen von sogenannten „Tags“ zu erfassen, die an Objekten angebracht sind. RFID-Tags können passiv oder aktiv sein. Passive Tags benötigen keine eigene Stromversorgung, denn sie beziehen ihre Energie aus dem elektromagnetischen Feld, das vom Lesegerät emittiert wird, haben aber eine geringe Reichweite von wenigen Metern. Aktive Tags haben eine eigene Batterie und senden kontinuierlich Signale aus, haben aber eine höhere Reichweite von bis zu 200 Metern. RFID-Tracking kann eine statische Position bestimmen, indem das Lesegerät erkennt, ob ein Tag in seiner Reichweite ist oder nicht. Die Genauigkeit hängt von der Anzahl und Position der Lesegeräte ab. Ein großer Vorteil von RFID ist, dass keine direkte Sichtlinie zwischen dem Tag und dem Lesegerät erforderlich ist. Darüber hinaus können mehrere Tags gleichzeitig gelesen werden. Allerdings kann es zu Interferenzen mit anderen Funkwellen kommen, die die Signalqualität beeinträchtigen können und Materialien wie Flüssigkeiten und Metalle können das Signal stören, so dass bspw. Leuchtstoffröhren und große Maschinen die Lesereichweite verringern. Außerdem kann RFID-Tracking keine dynamische Position bestimmen, bzw. die Bewegung eines Objekts verfolgen, ist also nicht für eine kontinuierliche Wegeverfolgung oder ein nahtloses Tracking über größere Flächen hinweg geeignet. Das Tracking Equipment ist bei RFID relativ teuer und damit i.d.R. nur für sehr lokale Anwendungsfälle geeignet. Die Tags dagegen sind extrem günstig und klein, so dass problemlos sehr große Mengen von Teilen gelabelt werden können. RFID Tracking wird daher insbesondere im Waren- und Bestandsmanagement, bei Förder- und Transportsystemen, in Ausweisen, zur Warensicherung und zur Zeiterfassung eingesetzt.

 

BLE-Tracking mit Beacons

Beim „Bluetooth Low Energy“-Tracking, kurz BLE, spielen die sogenannten „Beacons“ eine zentrale Rolle. Der Name „Beacon“ bedeutet auf Deutsch „Leuchtfeuer“ oder „Signalgeber“, was genau das beschreibt, was diese kleinen Geräte tun: Sie senden kontinuierlich Signale aus. Diese Signale können von Geräten in der Nähe erkannt werden und durch die Messung der Signalstärke kann die Entfernung zum Beacon abgeschätzt werden. Ein Vorteil der Bluetooth-Funksignale ist, dass sie beim Senden der Signale die meisten Materialien durchdringen können. Beacons sind in verschiedenen Größen, Farben und Formen erhältlich, sodass sie sich für zahlreiche Einsatzzwecke eignen und in jede Umgebung unauffällig und einfach integriert werden können. Bekannt ist diese Ortungstechnologie insbesondere durch die iBeacons von Apple und die Eddystones von Google.

Die BLE-Tags sind günstig und die Batterien halten bis zu zehn Jahre lang, da die Technologie extrem wenig Energie verbraucht. Als Ortungstechnologie für die Indoor Positionierung in IoT-Projekten gibt es zwei verschiedene Ansätze. Zum einen können Beacons stationär verbaut werden und ein mobiles Gerät kann dann seinen eigenen Standort anhand der Beacons ermitteln. Alternativ wird das Beacon an dem zu verfolgenden Objekt angebracht und die Lesegeräte befinden sich an verschiedenen Kontrollpunkten.

 

UWB

Ultra-Breitband (Ultra-Wideband, UWB) ist eine Kurzstrecken-Funktechnik, die sich insbesondere durch eine extrem präzise Positionierungsfähigkeit auszeichnet. Diese Ortungstechnologie ist besonders von Apple AirTags bekannt. Der Name „Ultra-Wideband“ bezieht sich auf die breite Bandbreite der Funkwellen, die sie verwendet. Ultrabreitband-Funk kann mit sehr geringer Leistung (weniger als 0,5 Milliwatt) riesige Datenmengen über eine Entfernung von bis zu 100 Meter übertragen. Es hat auch die Fähigkeit, Signale durch Türen und andere Hindernisse hindurch zu übertragen, die dazu neigen, Signale mit begrenzteren Bandbreiten und höherer Leistung zu reflektieren. Die Positionsbestimmung stützt sich nicht auf die Signalstärkenmessung, wie es bei BLE der Fall ist, sondern nutzt ein Verfahren zur Messung der Laufzeit. Durch das Senden von kurzen und sehr breiten Funkimpulsen über diese breite Bandbreite und die Messung der Zeit, die diese Impulse benötigen, um von einem Sender zu einem Empfänger zu gelangen, kann die Position mit einer Genauigkeit von bis zu wenigen Zentimetern bestimmt werden. Es bietet die höchste Präzision auf großen Flächen mit vergleichsweise geringem Installationsaufwand. UWB ist von den Kosten mit RFID vergleichbar. Da die UWB-Tags genauso wie die BLE-Beacons mit höheren Kosten als RFID-Chips verbunden sind, ist UWB für sehr große Mengen eher nicht geeignet. Obwohl UWB in Bezug auf die Hardware teurer ist als viele andere Technologien, bietet es jedoch insbesondere bei Anwendungen, die eine hohe Genauigkeit erfordern, den unübertroffenen Vorteil der höchsten Präzision.

 

Bluetooth AoA

Eine weitere Ortungstechnologie zur Indoor-Positionierung ist Bluetooth AoA. Hierbei handelt es sich im Grunde auch um BLE-Technologie, aber unter Einbeziehung der Richtung der Strahlen („Angle of Arrival“). Wie der Name schon andeutet, bestimmt diese Methode den Winkel, unter dem ein Bluetooth-Signal bei einem Empfänger eintrifft. Damit ermöglicht Bluetooth AoA eine deutlich präzisere Positionierung als herkömmliches Bluetooth-Tracking. Mit Bluetooth AoA werden Genauigkeiten von unter einem Meter selbst über große Reichweiten hinweg erzielt, so dass man selbst in den herausforderndsten (Industrie-)Umgebungen zuverlässige Ortungsdaten in Echtzeit erhält.

Während die Hardware und Software für Bluetooth AoA zwar komplexer und teurer sind, bietet es dafür aber eine beeindruckende Genauigkeit und ist weniger anfällig für Störungen durch physische Barrieren. Bluetooth AoA stellt bei der Indoor Positionierung somit einen Kompromiss zwischen der UWB Technik und der klassische BLE-Beacon Technik dar. Daher wird Bluetooth AoA in IoT-Projekten nicht nur gerne als Ortungstechnologie für ein präzises Indoor-Tracking, wie z.B. in der Fertigung oder Logistik, der Lagerhaltung, dem Supply Chain Management eingesetzt, sondern auch bspw. auch bei der Indoor-Navigation und der Robotersteuerung.



Fazit

Jede der hier vorgestellten Ortungstechnologien für die Indoor Positionierung hat ihre eigenen Vorteile und Nachteile. Daher hängt die Auswahl des passenden Lokalisierungssystems immer von den jeweiligen spezifischen Zielen und Anforderungen, den Rahmenbedingungen und auch dem Budget des IoT-Projekts ab. In manchen IoT Anwendungsfällen kann auch eine Kombination von mehreren Ortungstechnologien für die Positionsbestimmung und das Tracking von Objekten in Innenräumen sinnvoll sein. RFID kann für größere Systeme mit vielen Tags wirtschaftlicher sein, während UWB für Anwendungen mit hoher Genauigkeit geeignet ist, aber tendenziell teurer ist. BLE bietet einen Mittelweg in Bezug auf Kosten und Genauigkeit, besonders wenn die vorhandene Infrastruktur (z. B. Smartphones) genutzt werden kann.

Wenn Sie auf der Suche nach der am besten geeigneten Technologie für die Indoor-Positionierung für Ihr IoT-Projekt sind, sprechen Sie uns an.
Unsere IoT-Spezialisten helfen Ihnen gerne bei der Auswahl und Implementierung der passenden Ortungstechnologie.

 


 


Die Chancen und Möglichkeiten, die das „Internet of Things“ bietet, zu erkennen und für sich zu nutzen, ist es für jedes Unternehmen – unabhängig von der Branche oder der Größe – heutzutage besonders wichtig, um wettbewerbsfähig zu bleiben und langfristig erfolgreich zu sein. Denn durch die Integration von IoT Technik in Geschäftsprozesse und Produkte können Unternehmen ihre Betriebsabläufe effizienter gestalten, Kosten senken, bessere Entscheidungen treffen, innovativere Produkte anbieten und neue Einnahmequellen erschließen. Unternehmen, die auf den Einsatz von IoT Technik – aus welchem Grund auch immer (Know-how, Manpower, etc.) – verzichten, laufen große Gefahr, Kostennachteile zu erleiden, Umsätze einzubüßen und Marktanteile zu verlieren.

Beim Internet der Dinge (IoT) besteht das Grundprinzip in der Vernetzung von physischen Geräten und Objekten, die mit Sensoren, Software und Netzwerkverbindungen ausgestattet sind, um Daten zu sammeln, zu analysieren und zu kommunizieren. Eine der größten Herausforderung beim Einsatz von IoT Technik ist dabei die Menge der von den Sensoren gesammelten Daten, die verarbeitet, analysiert und ausgewertet werden müssen. In vielen IoT Szenarios ist es wichtig, dass das sehr zeitnah geschieht, im Idealfall in Echtzeit, um schnelle Entscheidungen zu ermöglichen und davon abhängige Aktionen automatisiert auslösen zu lassen. Eine Lösung für dieses Problem stellt das sogenannte „Edge Computing“ dar.

Edge Computing

Beim Edge Computing findet direkt auf den IoT Devices, also sozusagen „am Rand“ (engl. „Edge“) des Netzwerkes, eine Vorverarbeitung der gesammelten Daten statt, um so die Menge der in die Cloud zu übertragenden Daten zu minimieren und damit sowohl die Latenzzeiten als auch die Kosten für die Datenübertragung und die Speicherung in der Cloud zu reduzieren. Es kann auf verschiedenen Ebenen stattfinden, wie zum Beispiel auf der Ebene von Endgeräten, Netzwerkknoten oder Gateway-Geräten. Edge Computing ist eine wichtige Ergänzung zur Cloud-Computing-Architektur und wird zunehmend von Unternehmen und Organisationen genutzt, um die Skalierbarkeit und Effizienz ihrer IT-Infrastruktur zu verbessern.

Aber wäre es eigentlich nicht besser, wenn die zur Auswertung und Analyse notwendige Übertragung der Daten in die Cloud ganz wegfallen könnte und die Datenverarbeitung komplett auf dem IoT Device direkt stattfindet? Wenn die IoT Devices also selber Entscheidungen treffen und Aktionen autonom auslösen könnten? Wenn sie also in gewisser Weise „intelligent“ wären? Dank der aktuellen rasanten Entwicklungen im Bereich der Künstlichen Intelligenz ist genau das bereits tatsächlich schon möglich. Wenn KI auf IoT trifft, wird das als „AIoT“ bezeichnet.

AIoT: Artificial Intelligence of Things

AIoT steht für „Artificial Intelligence of Things“ und bezieht sich auf die Integration von künstlicher Intelligenz (engl.: Artificial Intelligence, kurz „AI“) in das Internet der Dinge (engl.: Internet of Things, kurz „IoT“). Bei AIoT handelt es sich um die nächste Stufe des IoT, denn der Einsatz von KI Technologie in IoT Projekten eröffnet neue, ungeahnte Möglichkeiten bei der Vernetzung und Automatisierung von Maschinen und Prozessen. Die KI gestützte Analyse und Auswertung der Daten direkt auf den IoT Devices ermöglicht es, dass Entscheidungen von den Geräten autonom getroffen werden können, um dann je nach IoT Anwendungsszenario die vorgesehenen Aktionen auszulösen. So wird Dank KI beispielsweise aus einem „normalen“ IoT Sensor ein „smarter“ IoT Sensor.

Smarte AIoT Sensoren

Smarte IoT Sensoren sind hochentwickelte Messgeräte, die nicht nur eine Messgröße erfassen, sondern auch in der Lage sind, mit Hilfe von Künstlicher Intelligenz (KI) und Algorithmen diese Messdaten zu verarbeiten, zu analysieren und autonom entsprechende Aktionen auszulösen. Sie sind in der Regel mit Mikroprozessoren, Speichern, Kommunikations- und Energieversorgungssystemen ausgestattet, was eine Verarbeitung der vom Sensor erfassten Daten direkt beim Sensor ermöglicht. Doch wie wird aus einem „normalen“ IoT Sensor ein „smarter“ AIoT Sensor? Woher bekommt ein smarter AIoT Sensor seine Intelligenz, um autonom Entscheidungen treffen und Aktionen auslösen zu können? Die Antwort: Durch entsprechende Software und Firmware, die direkt in die Sensor-Hardware eingebettet wird, und daher als „Embedded“ bezeichnet wird. Um solche KI gestützten Embedded Software Lösungen für Smarte AIoT Sensoren zu erstellen, gibt es spezielle Toolkits auf dem Markt. Eines dieser KI Toolkits, welches unsere Spezialisten in der IoT Manufaktur für Embedded Lösungen gerne in ihren AIoT Projekten einsetzen, ist „SensiML“.

Was ist SensiML?

SensiML ist eine Plattform für maschinelles Lernen (ML) und Entwicklung von Edge-KI-Lösungen für das Internet der Dinge (IoT), die von der Datenvorbereitung bis zur Implementierung der Modelle auf Geräten reicht und damit Echtzeit-Ereigniserkennung und Inferenz an den IoT-Sensor-Endpunkt bringt. SensiML bietet hochmoderne AutoML-Softwaretools, die Firmware- und Data-Science-Know-how vereinen, darunter automatisierte Modellgenerierung, Modellvalidierung, Modellverwaltung und eine Bibliothek mit vorgefertigten ML-Algorithmen. Damit versetzt SensiML Anwendungsentwickler in die Lage, schnell intelligente IoT-Geräte zu entwickeln, die rohe Sensordaten autonom in aussagekräftige Erkenntnisse verwandeln und vordefinierte Aktionen auslösen. Die Lösung ist Hardware-, JVM- und Betriebssystem-unabhängig und optimiert für den Einsatz in Embedded Edge-Plattformen wie Gateways und Hub-Geräten. Dabei läuft sie auf mehr als 40 verschiedenen Arten von Gateways und ist für viele JVMs, Betriebssysteme und Hardwarekonfigurationen portiert und optimiert. Da die intelligente Kompilierung von SensiML für MCU, Digitalen Signalprozessor (DSP) und Field-Programmable Gate Array (FPGA) optimiert ist, können Hardware-Ressourcen maximal ausgenutzt werden.

Das SensiML Toolkit ermöglicht eine schnelle und effiziente Entwicklung von IoT Edge-Computing-Lösungen für die verschiedensten Anwendungsbereiche, von der Industrieautomatisierung (Industrie 4.0) über Wearables und Smart-Home-Systeme bis hin zu medizinischen Geräten. Es wird von unseren IoT-Spezialisten gerne für das Rapid Prototyping von KI-gestützten, sensorbasierten IoT-Lösungen eingesetzt, denn insbesondere die AutoML-Funktionen von SensiML erleichtern und beschleunigen die Entwicklungsprozesse von Sensor basierten Embedded Software Systemen erheblich und ermöglichen damit entsprechend auch die schnellere Durchführung von Proof-of-Concepts für KI basierte IoT-Lösungen.

Wie funktioniert SensiML?

Die Vorteile für den Einsatz von SensiML ergeben sich aus den automatisierten Methoden des maschinellen Lernens, die die Plattform verwendet, um die Daten von den IoT Sensoren zu analysieren und Modelle für die Erkennung von Ereignissen zu erstellen. Die Funktionsweise von SensiML lässt sich in mehrere Schritte gliedern. Zunächst müssen die Daten von IoT Sensoren erfasst werden. Dies können zum Beispiel Beschleunigungssensoren oder Temperatursensoren sein, je nach Anwendungsfall. Anschließend werden die erfassten Daten bereinigt und vorverarbeitet, um Rauschen zu reduzieren und die Datenqualität zu verbessern. SensiML extrahiert automatisch Merkmale aus den vorverarbeiteten Daten, um sie für das maschinelle Lernen geeignet zu machen. Anschließend nutzt SensiML automatisierte Methoden des maschinellen Lernens, um Modelle für die Erkennung von Ereignissen zu erstellen. Hierbei werden verschiedene Algorithmen verwendet, wie z.B. künstliche neuronale Netze, Entscheidungsbäume oder Random Forests. Die erstellten Modelle werden anschließend validiert und optimiert, um sicherzustellen, dass sie zuverlässig und effektiv sind. Schließlich können die Modelle in IoT-Geräte integriert werden, um Ereignisse zu erkennen und entsprechende Aktionen auszulösen.

Sensor-Hardware für SensiML

SensiML ist ein IoT Toolkit, mit dem es möglich ist, IoT Sensoren relativ schnell und einfach zu „smarten“ – also intelligenten – AIoT Sensoren zu machen. Dies ist in IoT-Projekten besonders für das Rapid-Prototyping und das Proof-of-Concept sehr nützlich. Es gibt bereits eine große Anzahl an IoT Sensor-Hardware, die für den Einsatz von SensiML geeignet ist.

 

LSM6DSOX

Wenn es darum geht, genaue und zuverlässige Bewegungs- und Orientierungsdaten für Anwendungen zu erfassen, wird von unseren IoT Spezialisten besonders gerne der MEMS-Sensor LSM6DSOX aus der iNEMO-Familie von STMicroelectronics eingesetzt. Denn in diesem Chip arbeitet ein Machine-Learning-Core, der die Bewegungsdaten anhand bekannter Muster klassifiziert und damit den Hauptprozessor von dieser ersten Stufe der Aktivitätsverfolgung entlastet. Damit sinkt nicht nur der Energieverbrauch drastisch, sondern gleichzeitig verbessern sich auch die Erkennung und die Verarbeitungsgeschwindigkeit. Beim LSM6DSOX handelt es sich um ein System-in-Package (SiP) mit einem kombinierten mechanischen 3D-Beschleunigungsmesser und 3D-Gyroskop zusammen mit einem Low-Power-CMOS-ASIC zur Auswertung in einem kleinen Land-Grid-Array-Gehäuse (LGA-14L) aus Kunsstoff. Sein Beschleunigungsbereich von ±2/4/8/16g und der Winkelratenbereich von ±125/250/500/1000/ 2000 dps sind dynamisch wählbar. Der Hochleistungsmodus sorgt für hohe Performance bei nur 0,55 mA Stromverbrauch. Mit seinem extrem rauscharmen Beschleunigungsmesser und Gyroskop kombiniert der Sensor eine Always-on-Benutzererfahrung mit einer hohen Messgenauigkeit. Zum Ausprobieren und für die Prototypenentwicklung bietet ST Plug&Play-fähige Evaluation-Tools, wie z.B. die SensorTile.box an.

Ausführliche Spezifikationen

https://www.st.com/en/mems-and-sensors/lsm6dsox.html

https://docs.zephyrproject.org/3.1.0/boards/arm/sensortile_box/doc/index.html

Konfiguration

https://docs.platformio.org/en/latest/boards/ststm32/steval_mksboxv1.html#sensortile-box

Anleitungs-Video

https://www.youtube.com/watch?v=nGVZ0RN01YU

Use Case Beispiel Video

https://www.youtube.com/watch?v=4jkQ4lLmbno

 

Arduino Nano33 BLE Sense
Für Freunde des Arduino ist der Arduino Nano33 BLE Sense interessant. Hierbei handelt es sich um eine kompakte und vielseitige Entwicklungsplatine, die auf dem Arduino-Entwicklungsframework basiert und eine Vielzahl von Funktionen und Sensoren bietet. Die Platine verfügt über einen Arm Cortex-M4-Prozessor mit Bluetooth Low Energy (BLE) und einen 9-Achsen-Inertialsensor (Gyroskop, Beschleunigungsmesser und Magnetometer) sowie Umgebungssensoren wie Temperatur-, Luftfeuchtigkeits- und Luftdrucksensor. Darüber hinaus verfügt die Platine über ein Mikrofon, NFC-Tag-Antenne und eine RGB-LED. Der Arduino Nano33 BLE Sense ist auch mit der Arduino-Entwicklungsplattform kompatibel und kann mit der Arduino-IDE programmiert werden.

  • Mikrocontroller: Das Board ist mit einem Nordic nRF52840 Mikrocontroller ausgestattet, der eine hohe Rechenleistung und eine geringe Stromaufnahme bietet.
  • Sensoren: Der Arduino Nano33 BLE Sense verfügt über eine breite Palette von Sensoren, darunter Beschleunigungsmesser, Gyroskop, Magnetometer, Luftdrucksensor, Temperatursensor, Feuchtigkeitssensor und Mikrofon.
  • Konnektivität: Das Board ist mit Bluetooth Low Energy (BLE) ausgestattet, um eine drahtlose Verbindung zu anderen Geräten und Cloud-Plattformen herzustellen.
  • Stromversorgung: Das Board kann über eine USB-Verbindung oder eine externe Batterie betrieben werden.
  • Entwicklungssoftware: Der Arduino Nano33 BLE Sense ist mit der Arduino-IDE kompatibel, die es Entwicklern ermöglicht, schnell und einfach Anwendungen zu programmieren. Es unterstützt auch andere Entwicklungstools wie CircuitPython und Zephyr.
  • Abmessungen: Das Board hat eine Größe von 45 x 18 mm und wiegt nur 5 g, was es sehr kompakt und tragbar macht.

Ausführliche Spezifikation

Arduino Nano 33 BLE (Sense) — Zephyr Project Documentation

Konfiguration

Arduino Nano 33 BLE — PlatformIO latest documentation

Konfiguration Video

Nano33 BLE Sense – Download and Flash Knowledge Pack – YouTube

 

onsemi RSL10-SENSE-GEVK Platform

Die ON Semiconductor RSL10-SENSE-GEVK-Plattform ist ein Entwicklungs-Kit für Rapid Prototyping und Proof-of-Concept von IoT-Anwendungen, das auf dem RSL10-Bluetooth-Low-Energy-System-on-Chip (SoC) von ON Semiconductor basiert. Das Kit enthält einen Sensor-Hub und eine Vielzahl von Sensoren wie Beschleunigungsmesser, Gyroskop, Magnetometer, Luftfeuchtigkeitssensor, Temperatursensor und Umgebungslichtsensor.

  • Sensoren: Die RSL10-SENSE-GEVK Platform ist mit einer Vielzahl von Sensoren ausgestattet, darunter Beschleunigungsmesser, Gyroskop, Magnetometer, Umgebungslichtsensor, Luftdrucksensor und Temperatursensor.
  • Prozessor: Das Board ist mit einem onsemi RSL10-Mikrocontroller ausgestattet, der eine extrem geringe Stromaufnahme von nur 62,5 nA im Sleep-Modus aufweist.
  • Konnektivität: Die Plattform unterstützt Bluetooth Low Energy (BLE) 5.0, um eine drahtlose Verbindung zu anderen Geräten und Cloud-Plattformen herzustellen.
  • Stromversorgung: Das Board kann über eine USB-Verbindung oder eine externe Batterie betrieben werden.
  • Entwicklungssoftware: Die RSL10-SENSE-GEVK Platform wird mit der onsemi IoT Development Kit (IDK) Software geliefert, die eine einfache Entwicklung von IoT-Anwendungen unterstützt. Es ist auch mit anderen Entwicklungstools wie Arm Mbed OS und Zephyr kompatibel.
  • Abmessungen: Das Board hat eine Größe von 36,5 x 29,5 mm und wiegt nur 4 g, was es sehr kompakt und tragbar macht.

Anleitung

SensiML | onsemi

Beispiel-Video

https://www.youtube.com/watch?v=hVGfhvcoe6E

 


Weiterführende Informationen

Homepage

SensiML – Making Sensor Data Sensible

SensiML Videos

SensiML – YouTube

SensiML Analytics Toolkit – Quick Starter Tutorial

SensiML Analytics Toolkit – Quick Start Tutorial Chapter 1 – YouTube


Noch mehr Informationen zu den Themen IoT, AIoT und KI finden Sie auf den Seiten unserer IoT Manufaktur.

 


 


Künstliche Intelligenz (KI) ist eine der am schnellsten wachsenden Technologien in der heutigen Zeit. Die Anwendungsbereiche reichen von der Gesundheitsfürsorge bis hin zur Automobilindustrie und darüber hinaus. KI-basierte Technologien haben auch in Unternehmen Einzug gehalten und sind in vielen Branchen im Einsatz. Von der Automatisierung von Geschäftsprozessen bis hin zur Vorhersage von Kundenverhalten – KI-Technologien werden immer häufiger eingesetzt, um Unternehmen dabei zu helfen, ihre Geschäftsabläufe zu optimieren und bessere Entscheidungen zu treffen.

Die Integration von Künstlicher Intelligenz im B2B-Vertrieb bietet Unternehmen die Chance, den Turbo einzuschalten und ihren Umsatz zu steigern. Sales Tools mit KI-Technologien können Vertriebsprozesse automatisieren, Analysen durchführen und wertvolle Einblicke in Kundenverhalten und Verkaufsmuster liefern. Sie erlauben es Unternehmen ihre Vertriebsprozesse zu optimieren, bessere Kundenbeziehungen aufzubauen und letztendlich bessere Geschäftsergebnisse zu erzielen.

In den letzten Jahren hat sich die Vertriebslandschaft stark verändert. Kunden haben heute höhere Erwartungen und sind besser informiert als je zuvor. Vertriebsmitarbeiter müssen daher agiler und effizienter arbeiten, um wettbewerbsfähig zu bleiben. Der Einsatz von KI-Technologien im B2B-Vertrieb ist daher nicht nur sinnvoll, sondern mittlerweile unerlässlich, um im heutigen harten Wettbewerbsumfeld noch erfolgreich bestehen zu können.

 

KI Sales Tools zur Lead-Generierung und Lead-Qualifizierung

Die Lead-Generierung ist ein wichtiger Schritt im Vertriebsprozess, bei dem potenzielle Kunden identifiziert werden, die an einem bestimmten Produkt oder einer Dienstleistung interessiert sein könnten. Bislang wird die Lead-Generierung durch Marketing- und Werbeaktionen, Telefonakquise und Networking-Veranstaltungen durchgeführt. Mit dem Einsatz von Künstlicher Intelligenz lassen sich diese Prozesse effektiver und effizienter gestalten. KI Sales Tools können beispielsweise verschiedene Datenquellen analysieren, um potenzielle Kunden zu identifizieren. Dazu gehören z.B. öffentlich zugängliche Informationen wie Firmendaten, soziale Medien, Websites, Foren, Blogs und Artikel. Die KI Sales Tools analysieren diese Informationen, um potenzielle Kunden mit einer höheren Kaufbereitschaft und Kaufwahrscheinlichkeit zu identifizieren, basierend auf Kriterien wie Firmengröße, Umsatz, Mitarbeiterzahl, Standort und Verhaltensmuster. Sobald potenzielle Kunden identifiziert wurden, werden sie von den KI Sales Tools automatisch qualifiziert, wobei verschiedene Faktoren wie z.B. das Kaufverhalten, die Interaktion mit dem Unternehmen auf der Website oder den sozialen Medien, den Standort und das Branchensegment analysiert werden. Basierend auf diesen Kriterien können die Vertriebsmitarbeiter dann entscheiden, welche Leads am wahrscheinlichsten sind, tatsächlich Kunden zu werden, und ihre Zeit und Energie auf die vielversprechendsten Leads konzentrieren. So ermöglicht es die Nutzung von KI Sales Tools zur Lead-Generierung und Lead-Qualifizierung den Vertriebsmitarbeitern, Zeit und Ressourcen zu sparen und den Umsatz und die Kundenzufriedenheit zu steigern.

 

KI Sales Tools zur Vertriebsprognose und Vertriebsoptimierung

Eine Anwendung von Künstlicher Intelligenz im Vertrieb, die sich als äußerst erfolgreich erwiesen hat, ist die Verwendung von KI zur Vertriebsprognose und Vertriebsoptimierung mit dem Ziel, Umsatz und Gewinn zu steigern und gleichzeitig eine maximale Kundenzufriedenheit zu gewährleisten. Traditionell wird die Vertriebsprognose von erfahrenen Vertriebsmitarbeitern auf der Grundlage von historischen Daten und Marktanalysen durchgeführt. Diese Methode ist jedoch fehleranfällig und führt oftmals zu ungenauen oder unzutreffenden Vorhersagen. KI-basierte Technologien bieten hier eine bessere Lösung, denn einer ihrer größten Vorteile ist die Fähigkeit, große Datenmengen in Echtzeit zu analysieren und Muster und Trends in den Daten zu erkennen, die für menschliche Analysten schwer zu erkennen sind. Da es im Vertrieb stets darum geht, die richtigen Produkte oder Dienstleistungen an die richtigen Kunden zu verkaufen, ist eine genaue Prognose darüber, welche Produkte oder Dienstleistungen in welcher Menge verkauft werden können, von entscheidender Bedeutung für den Erfolg eines Unternehmens. KI Sales Tools können mit Hilfe von Machine-Learning-Algorithmen große Datenmengen analysieren, um daraus genaue Vertriebsprognosen zu erstellen, die beispielsweise den Einfluss von Saisonalität, Wettbewerb und Markttrends berücksichtigen.

Auch für eine Optimierung des Vertriebsprozesses ist der Einsatz von Künstlicher Intelligenz geeignet. Eine Analyse von Verkaufsmustern und Kundenverhalten ermöglicht es KI Sales Tools beispielsweise, Empfehlungen für das Upselling oder Cross-Selling von Produkten zu geben oder bei der Planung von Marketingkampagnen zu unterstützen, indem sie Vorschläge für die besten Kanäle und Zielgruppen liefern.

 

KI Sales Tools für die personalisierte Kundenansprache

Für den Vertriebserfolg ist auch eine personalisierte Kundenansprache ein wichtiger Faktor. Kunden erwarten heutzutage, dass Unternehmen ihre individuellen Bedürfnisse und Interessen verstehen und darauf eingehen. Durch die Nutzung von KI Sales Tools können Unternehmen eine personalisierte Kundenansprache auf eine effektivere und effizientere Weise umsetzen. Die KI-Technologien werden dabei eingesetzt, um Informationen über das Verhalten, die Vorlieben und die Kaufhistorie von Kunden zu sammeln und zu analysieren. Dazu gehören Daten aus verschiedenen Quellen wie CRM-Systeme, sozialen Medien, E-Mails, Chats und Transaktionsdaten. Basierend auf diesen Daten erstellen KI-Tools Kundenprofile und passen die Kundenansprache und Angebote entsprechend an.

Des Weiteren können KI-Technologien genutzt werden, um automatisch personalisierte E-Mails, Chats oder Angebote zu erstellen und zu versenden. Die KI Sales Tools analysieren hierfür die Kundenprofile und wählen automatisch die relevantesten Informationen und Angebote aus, um die Kunden auf eine persönliche Weise anzusprechen. Eine personalisierte Kundenansprache durch KI Sales Tools kann dazu beitragen, dass Kunden sich verstanden und geschätzt fühlen, was zu einer höheren Kundenzufriedenheit und -bindung führt. Wodurch dann i.d.R. auch die Verkaufszahlen steigen, da personalisierte Angebote und Informationen relevanter und ansprechender für die Kunden sind.

Bei der personalisierten Kundenansprache ist jedoch zu beachten, dass eine zu starke Personalisierung eventuell auch negative Auswirkungen haben kann, wenn Kunden z.B. das Gefühl bekommen, dass ihre Privatsphäre verletzt wird oder dass sie zu sehr manipuliert werden. Beim Einsatz von Künstlicher Intelligenz im Vertrieb sollte daher sichergestellt werden, dass die personalisierte Kundenansprache ethisch und transparent umgesetzt wird, um das Vertrauen und die Loyalität der Kunden nicht zu verlieren.

 

Die Zukunft des B2B-Vertriebs mit KI Sales Tools

Die Zukunft des Vertriebs wird zweifellos von Künstlicher Intelligenz geprägt sein. KI Sales Tools bieten Vertriebsmitarbeitern die Möglichkeit, ihre Verkaufsprozesse zu automatisieren und zu optimieren, um schneller und effektiver Kunden zu gewinnen, Verkaufschancen besser zu erkennen und potenzielle Kunden zu identifizieren sowie mit einer optimalen KI-gestützten Beratung das Kundenerlebnis zu verbessern. All dies wird zu einer höheren Effizienz und Effektivität der Vertriebsprozesse und somit letztendlich auch zu höheren Umsätzen führen. Unternehmen, die auch künftig noch wettbewerbsfähig bleiben wollen, werden um den Einsatz von KI Sales Tools in ihren Vertriebsorganisationen nicht herumkommen.

 

KI Sales Tools aus der Sales Tool Manufaktur

Die SIC! Software „Sales Tool Manufaktur“ erstellt individuelle, maßgeschneiderte Software-Lösungen für das persönliche Kundengespräch. Ein Sales Tool aus unserer Sales Tool Manufaktur bietet viele Vorteile, mit denen Sie den Erfolg Ihrer Vertriebsmannschaft steigern können. Unsere erfahrenen Spezialisten implementieren dabei auch innovative KI-Technologien, um die Effektivität und Effizienz der Vertriebsprozesse unserer Kunden zu steigern. Mit unseren maßgeschneiderten Sales Tools und unserer Expertise im Bereich der KI-Technologie sind wir der ideale Partner für Unternehmen, die in ihrem B2B-Vertrieb den Intelligenz-Turbo zuschalten möchten.

Sprechen Sie uns an, um mehr darüber zu erfahren, wie wir Ihnen helfen können, mit Hilfe von KI-gestützten Sales Tools Ihren B2B-Vertrieb auf ein neues Level zu heben.

 


 

Aktuell stehen viele Unternehmen vor der großen Herausforderung, weitere Möglichkeiten für Energieeinsparungen zu finden. Neben den Stromkosten stehen dabei zwangsläufig auch die Heizkosten auf dem Prüfstand. Moderne IoT Technologien sind vielfach der Schlüssel, um weitere Einsparpotentiale bei den Heizkosten bzw. den Energiekosten zu heben, indem neue Optimierungsmöglichkeiten für die Temperatursteuerung in den Räumen identifiziert werden.

Temperatur-Monitoring

Mit dem Anbringen eines kleinen Temperatursensors in jedem einzelnen Raum lässt sich schnell und unkompliziert ein permanentes Temperatur-Monitoring realisieren. Durch Vernetzung der Sensoren und die Verbindung mit der Cloud können nicht nur jederzeit die aktuellen Temperaturen von jedem einzelnen Raum zentral und übersichtlich auf einem einzelnen Online-Dashboard gesehen werden, sondern auch die gespeicherten Temperaturverläufe von dem jeweiligen Raum. Mit diesen Informationen wird klar erkennbar, in welchen Räumen durch Anpassungen der Raumtemperatur sofort entsprechende Heizkosteneinsparungen realisiert werden können.

Monitoring der Raumnutzung

Die Optimierung der Raumtemperaturen lässt sich noch präziser gestalten, wenn gleichzeitig ein Monitoring der Raumnutzung stattfindet. Denn in jedem Raum, der sich nicht in Nutzung befindet, könnte vorübergehend die Temperatur abgesenkt werden. Auch hierbei sind IoT Technologien der Schlüssel für neue Einsparpotentiale. Mit vernetzten Sensoren, welche die Raumnutzung registrieren und ihre Daten in die Cloud senden, lässt sich auf dem Online-Dashboard dann nicht nur die aktuelle Nutzung jedes einzelnen Raums in Echtzeit, sondern auch der Nutzungsverlauf des Raums anzeigen. Diese Daten ermöglichen dann – ggf. zusätzlich noch unter Berücksichtigung von Raumbelegungsplänen – eine bedarfsgerechte, automatisierte Steuerung der Raumtemperatur für jeden einzelnen Raum. Ein weiterer Schritt zur Vermeidung von unnötigen Heizkosten.

Neue Mindest-Temperatur am Arbeitsplatz

Dabei ist jedoch zu beachten, dass in Unternehmen gleichzeitig auch die Arbeitsschutzrichtlinien einzuhalten sind, welche bestimmte Mindesttemperaturen für die verschiedenen Arten von Arbeitsplätzen festlegen. Für Büroarbeitsplätze ist beispielsweise eine gesetzliche Mindesttemperatur von 20 Grad vorgeschrieben. Seit dem Inkrafttreten der Energieeinsparverordnung am 01.09.2022 können Unternehmen jedoch aktuell von den Vorgaben der Arbeitsschutzrichtlinie um 1 Grad nach unten abweichen, da nun 19 Grad als neue Minimaltemperatur in den Büros gilt.

Fazit

Temperatursensoren mit Cloud-Anbindung stellen somit nicht nur eine einfache und effiziente Möglichkeit dar, mit Hilfe von IoT Technologien die Energiekostenbremse zu ziehen sondern auch die Einhaltung der Arbeitsschutzrichtlinien bezüglich der zulässigen Mindest-Temperatur in Arbeits- und Büroräumen zu überwachen.

 


Das hier beschriebene IoT Anwendungsszenario „Energiekostenbremse“ ist nur eines von vielen Beispielen, wie moderne IoT Technologien gewinnbringend in Unternehmen eingesetzt werden können. Weitere Beispiele, Case Studies und Informationen zum Thema IoT finden Sie auch auf den Seiten unserer IoT Manufaktur.

 


Der aktuelle Chipmangel setzt vielen Unternehmen aus den unterschiedlichsten Branchen heftig zu – nach aktuellen Studien leiden insgesamt 169 Branchen unter den fehlenden Mikroprozessoren. Insbesondere die Hersteller von Maschinen und Anlagen trifft der Chipmangel hart, wenn Anlagen im Wert von mehreren Millionen Euro nicht in Betrieb gehen können, nur weil ein kleines Stück Hardware fehlt, in dem „Intelligenz“ für den Betrieb der Anlage steckt. Auch viele IoT-Projekte, bei denen eine Cloud-Anbindung eine zentrale Rolle spielt, liegen aktuell auf Eis, weil die notwendigen IoT Edge Computing Devices nicht erhältlich sind.

Bei einem unserer Kunden, einem mittelständischen Maschinenbau-Kunden, zeichnete sich dieses Problem auch ab. Mit IoT-Technik sollen Werkzeuge in Produktionsmaschinen überwacht werden, um eine gleichbleibende Qualität in der Fertigung sicherzustellen und Handlungsbedarfe rechtzeitig zu erkennen (Predictive Maintenance). Die für dieses IoT-Projekt ausgewählten Edge Devices, welche die von den Sensoren über BLE empfangenen Maschinen-Daten an die Cloud senden sollen, sind aber aufgrund des aktuellen Chipmangels auf dem Markt auf absehbare Zeit nicht mehr erhältlich. Auch bei den übrigen Anbietern auf dem Markt der klassischen IoT Edge Devices ist die Situation identisch.

Um den drohenden Stillstand der Anlagen bei unserem Kunden zu vermeiden, haben unsere IoT Spezialisten nach einer alternativen Lösung gesucht und ein BTLE-fähiges IoT Edge Device gefunden, das nicht von den aktuellen Lieferschwierigkeiten betroffen ist. Einziges Problem: Es handelt sich hierbei um einen Empfänger aus einem geschlossenen IoT-Gesamtsystem, der eigentlich ausschließlich für die BTLE-Kommunikation mit den zugehörigen System-Sensoren des Herstellers konzipiert ist.

Da die IoT Spezialisten im Hause SIC! Software jedoch auch umfangreiches Know-how und viel Erfahrung in der Firmware- bzw. Embedded-Software-Entwicklung besitzen, konnten dank der Kooperationsbereitschaft des Herstellers individualisierte IoT Edge Devices bestellt werden, auf welche der Hersteller eine von SIC! speziell für den Einsatz in diesem IoT Kundenprojekt entwickelte Firmware aufgespielt hat. Damit können diese Devices über BTLE mit den bereits an den Maschinen unseres Kunden vorhandenen Sensoren kommunizieren und ermöglichen eine zentrale Datenerfassung und Verwaltung der Maschinen-Sensoren. Bei der Entwicklung der Firmware wurde auf höchste Sicherheit bei der Datenübertragung Wert gelegt und eine End2End Verschlüsselung integriert. Zudem ermöglicht die individuelle Firmware jederzeit Anpassungen und Aktualisierungen per OTA-Updates, womit eine volle Kontrolle über das System gewährleistet ist.

Diese alternative Lösung hat für unseren Kunden nicht nur den Vorteil einer sofortigen und auf absehbare Zeit unlimitierten Verfügbarkeit der Hardware, sondern auch die gegenüber den klassischen IoT Edge Devices deutlich günstigeren Anschaffungskosten, womit eine komplette BTLE-Ausleuchtung von Werks- oder Lagerhallen zu einem Bruchteil der Kosten von klassischen IoT Edge Devices möglich wird.

So haben die SIC! IoT-Spezialisten mit ihrer Expertise im Bereich der Firmware-/Embedded-Software-Entwicklung in diesem IoT-Kundenprojekt aus der Not eine Tugend gemacht und unserem Kunden geholfen, einen kritischen Engpass dauerhaft zu überwinden und die bei ihm bestellten Anlagen wie geplant ausliefern und in Betrieb nehmen zu können.

 


Gerne unterstützen unsere IoT-Spezialisten mit ihrer umfangreichen Kompetenz und langjährigen Erfahrung im Bereich der Entwicklung von individueller Firmware bzw. Embedded Software auch Sie in Ihren IoT-Projekten. Egal wo Sie mit Ihrer Idee oder Herausforderung im Moment stehen, wir finden einen gemeinsamen Einstieg.
Sprechen Sie uns an, wir freuen uns auf Sie!