Wenn die Schule in Baden-Württemberg nach den Herbstferien wieder beginnt, gelten nun auch die von der Landesregierung beschlossenen neuen, vierwöchigen verschärften Anti-Corona-Maßnahmen. Im Gegensatz zum kompletten Lockdown vom April diesen Jahres sollen dieses Mal bei diesem „Lockdown Light“ nach aktuellem Stand die Schulen weiter geöffnet bleiben können.

Um Infektionen zu vermeiden, wird in den Schulen dabei nun zusätzlich zu den bisherigen AHA-Maßnahmen auch ein besonderes Augenmerk auf die Luftqualität gelegt. So soll die potentielle Virenbelastung der Luft durch einen möglichst permanenten Luftaustausch reduziert werden. Da aber mit den in dieser Jahreszeit sinkenden Außentemperaturen eine permanente Öffnung der Fenster kaum noch möglich ist, kann der notwendige Luftaustausch nur durch regelmäßiges Lüften erreicht werden.

Doch welches ist das richtige Lüftungsintervall? Wie kann man gute Luft in den Klassenzimmern erhalten, ohne dass alle Kinder mit Heizdecken zur Schule kommen müssen?

Hier kann ein sogenannter CO2 Guard helfen. Denn Forscher haben herausgefunden, dass die Kohlendioxidkonzentration (CO2) in der Innenraumluft nicht nur für Unruhe, Müdigkeit und Kopfschmerzen verantwortlich sein kann, sondern auch ein Indikator für potenziell virenbeladene Aerosol-Konzentrationen ist. Ein CO2-Messgerät kann anzeigen, wenn bestimmte Grenzwerte erreicht sind, also „die Luft verbraucht ist“ und somit ein Luftaustausch durch Lüften angebracht ist.

Um einen Beitrag für gute Luft in den Schulen zu leisten, hat SIC! Software einige selbst gebaute CO2 Guards mit „Internet of Things“ Funktionen an eine Heilbronner Grundschule gespendet. Die handlichen Geräte werden einfach an eine Steckdose angeschlossen und zeigen dann – unterstützt durch entsprechende Grafiken, die einem Ampelsystem entsprechen – die Luftqualität im Raum an.

Und da SIC! als IoT Spezialist natürlich eine echte IoT-Lösung geliefert hat, kann Schulleiter Florian Scheufele auch auf seinem PC im Büro auf einem Dashboard die Luftqualität in den einzelnen Klassenzimmern, in denen ein CO2 Guard aufgestellt ist, überwachen.

 


Viele IoT-Geschäftsmodelle sind nur mit Hilfe global nutzbarer Konnektivität möglich, wobei aus Gründen der Prozessoptimierung und Kostenminimierung eine intelligente Reduzierung der Datenmenge bereits am Ort ihrer Entstehung stattfinden sollte. Die Lösung dafür sind IoT-Edge-Gateways, welche nahe der Datenquelle – also am Rand („Edge“) des weltweiten Kommunikationsnetzes – positioniert und zu einer intelligenten Datenvorverarbeitung befähigt sind.

Als Hilfestellung bei der Auswahl des richtigen IoT Edge-Gateways vergleichen wir für Euch in einer Video-Serie im Rahmen des SIC! TechTalks die Vor- und Nachteile von aktuell am Markt befindlichen IoT-Edge-Gateway Devices.

Neben den Hardware-Eigenschaften werden insbesondere die nicht sofort so offensichtlich erkennbaren Vor- und Nachteile rund um die Software untersucht, gezeigt und erläutert, wie z.B.

  • welches Betriebssystem kommt zum Einsatz?
  • wie sind die Konzepte zur Verwaltung eigener Software?
  • wie steht es um das Thema Updatebarkeit (a. der eigenen Software / b. des Betriebssystem selbst)?
  • wie sieht es mit der Zukunftssicherheit aus?

 





Der IoT-Edge-Gateway-Vergleich wird fortgesetzt,

Videos zu weiteren IoT Edge Devices sind in Vorbereitung!

 


Edge Computing in der Praxis

Unsere Expertise im Bereich IoT in der Cloud und Embedded Engineering hat bereits zum Erfolg von zahlreichen Innovationen beigetragen.

Einige Beispiele aus der Praxis für den Einsatz von IoT Edge Gateway Devices finden Sie in unseren IoT-Projekt-Referenzen.


Warum Edge Computing?

Erfahren Sie, wie wir den Wert von Daten steigern und die IoT-Cloud-Kosten senken indem wir Sensor-Daten bereits auf den Edge Devices für die Cloud mit AWS Greengrass veredeln:

Vorteile und Funktionen mit Edge Computing


Kostenfreie IoT Projekt-Beratung

Sie haben ein IoT Projekt und benötigen Unterstützung? Profitieren Sie bei unserem „Experten-Feedback“ Angebot von unserem Know-how und der langjährigen Erfahrung aus zahlreichen IoT-Projekten. In einer kostenfreien Online-Beratungsstunde erhalten Sie Feedback für Ihre IoT-Cloud-Projekte von unseren IoT-Spezialisten sowie Best Practice Tipps.

Mehr Info


 

Eine grundlegende Anforderung vieler IoT Projekte ist die Visualisierung der Daten, egal ob Sensor- oder Maschinendaten. Insbesondere steht gerade zu Beginn vieler Projekte eine Visualisierung der Daten direkt am Edge ganz oben auf der Wunschliste von Kunden, aber auch dem Entwickler selbst.

Bei dieser Anforderung geht es in erster Linie darum, schnell und einfach Feintuning an den erhobenen Daten vorzunehmen oder einfach nur zu sehen, ob Sensoren richtig positioniert oder kalibriert sind.

In vielen IoT Projekten und bei Demonstratoren auf Messen sehen wir immer wieder Node-RED als das Mittel der Wahl, um Dashboards auf IoT Edge Geräten zu bauen und diese initiale Visualisierung der Daten zu ermöglichen.

Ohne Frage ist das sicher eine Möglichkeit, vergleichsweise schnell und mit wenigen oder keinen Programmierkenntnissen Datenvisualisierung zu betreiben.

Allerdings hat die Nutzung von Node-RED in der Praxis auch viele Einschränkungen, die uns bewogen haben, hier einen etwas anderen Weg zu gehen. Auch wenn es in Node-RED sehr einfach erscheint, Dashboards zu bauen, so sind diese jedoch trotzdem relativ starr. Sobald sich an den eingehenden Daten etwas verändert – und sei es nur ein neuer Sensorwert – muss sofort wieder am Dashboard Hand angelegt werden. Scripte werden angepasst, neue Widgets werden angelegt und positioniert etc.

Zudem sind die Daten dann meist auch verloren, wenn man sich nicht die Mühe gemacht hat, diese auch in einer Datenbank zwischenzuspeichern.

Um das alles flexibler zu gestalten, bietet sich der Technologistack von Influx, der sogenannte „TICK Stack“ an. TICK steht hier für Telegraf – InfluxDB – Chronograf – Kapacitor. InfluxDB stellt hier den Kern als TimeSeries Datenbank dar. Telegraf ist die universale Waffe, um die Daten von beliebigen Quellen in die Datenbank zu bekommen und Chronograf ist für die Visualisierung zuständig.

Wie sieht das in der Praxis also aus:

 

Die Daten werden vom Sensor oder der Maschine an einen MQTT Broker (z.B. Mosquito) geschickt.

Der Telegraf kann mit Bordmitteln auf den MQTT Broker auf beliebige Topics subscriben und diese Daten dann direkt an die Datenbank weitergeben. Der Vorteil, der diese Konstellation so flexibel macht, ist die Tatsache, dass man nirgends spezifizieren muss, welche Daten erwartet werden. Solange die MQTT Payload aus Key/Value Werten besteht, werden diese alle einfach in die Datenbank übernommen. Wenn einer dazu kommt, muss nichts verändert werden.

Entscheidend ist hier die Konfiguration des MQTT Consumer Plugin:

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/mqtt_consumer

Zum einen muss das Topic spezifiziert werden. In diesem Beispiel würde alles, was unterhalb von Sensor gepublished wird, in die Datenbank übernommen.

topics = [

„sensors/#“,

]

 

Am Ende der Config ist es noch wichtig, das Datenformat zu spezifizieren:

data_format = „json“

 

Ist das gemacht, landen alle Daten vom MQTT Broker automatisch in der Datenbank.

Die Payload des MQTT sollte dieses Format haben:

{

„Druck“: 100,

„Temperatur“: 34.2

}

Damit ist die Arbeit auch schon getan, denn der Chronograf wird diese Daten über den Explore direkt für die Visualisierung zugänglich haben.

Jetzt kann ich ohne weitere Konfiguration mit beliebigen Sensordaten arbeiten und muss mich nicht mehr um die Konfiguration dieser Kette kümmern.

Als weiterer kleiner Nebeneffekt überwacht der Telegraf auch noch den Host und man bekommt ein Systemmonitoring (Speicher/CPU/Festplatte) zusätzlich geschenkt.


Download

Hier können Sie das Beispielprojekt für die HARTING MICA als Datei downloaden:

SIC-TICK-Container_v1.0.tar


Video

Hier finden Sie ein Anleitungsvideo, in dem Schritt für Schritt gezeigt wird, wie man mit dem von SIC! Software bereitgestellten Container für die HARTING MICA den TICK Stack von InfluxDB deployen und damit sehr einfach Maschinen- bzw. Sensordaten in einer Datenbank auf dem Gateway speichern und auf einem Dashboard ganz einfach visualisieren kann.

Video: Flexible IoT Edge Datenverarbeitung mit dem TICK Stack


Stehen Sie aktuell vor einer Edge Computing Herausforderung?

Gerne unterstützen unsere IoT Experten Sie bei Ihren Projekten und helfen Ihnen dabei, möglichst optimale Lösungen zu finden.

Sprechen Sie uns an: Kontakt


 

 

Überall dort wo Cloud-Computing auf die Steuerung und Überwachung im Feld trifft und dies zudem zuverlässig funktionieren muss, wird oft auf Edge-Computing zurückgegriffen.
Dies hilft beispielsweise Unterbrechungen im Betrieb zu vermeiden, da das Gesamtsystem auch ohne eine permanente Online-Verbindung über ein Netzwerk weiter funktioniert.
In der Cloud selbst (und dies gilt auch für jedes vernünftige Rechenzentrum) ist es hier ohne Probleme möglich, eine entsprechende Verfügbarkeit zu gewährleisten.
Wendet man den Blick aber in Richtung Edge, sieht die Welt wieder ganz anders aus: Keine redundante Internetanbindung/-Infrastruktur, Zuständigkeiten verschiedenster Dienstleister/Provider und Netzwerke zwischen Rechenzentrum und Edge-Device.
Hier kann dann schnell mal etwas schiefgehen oder einfach ausfallen – die Fehlerquellen sind sehr vielfältig. Eine Analyse der Probleme ist jedoch unter diesen Umständen relativ zeitraubend und aufwendig.
Aber schieben wir diese sehr kurze Einführung in das Thema Edge-Computing beiseite und betrachten das hieraus resultierende Problem:

Wie verwalte ich die Edge-Devices am besten?

Hat man bereits ein Cloud-Setup für seine IT-Infrastruktur und nutzt hier die Vorteile wie beispielsweise IaC (Infrastrucute-as-Code) und CD (Continuous-Delivery), meldet sich sofort dieses unangenehme Gefühl in der Magengegend, das einem nichts Gutes signalisiert, da solche Tools und Workflows für Edge-Computing – wenn überhaupt – nur sehr schwer umzusetzen sind.
Um genau dieses Thema zu adressieren, haben die großen Cloud Anbieter – und hier allen voran AWS – entsprechende Frameworks für Edge Devices geschaffen. Mit AWS Greengrass steht ein mächtiges Werkzeug zur Verfügung, um Komfortfunktionen, wie man sie aus der Cloud Welt kennt, auch auf einem Edge Device zur Verfügung zu haben.
Zu den wichtigsten Funktionen zählen:

  • Sicherer Remote Zugriff auf die Geräte (Tunnel)
  • Verwaltung von Software, insbesondere die Verteilung von Updates
  • Sicherer Datenkanal in die Cloud mit automatischer Zwischenspeicherung für den Fall, dass die Verbindung nicht möglich ist
  • Eine Laufzeitumgebung, um z.B. Serverless-Anwendungen, wie z.B. Lambda auszuführen

Der Workflow sieht dabei primär vor, die Greengrass Installation in einen Container zu packen und diesen auf dem Edge-Device laufen zu lassen. Da sich tendenziell auch viel häufiger Änderungen an der Anwendung selbst ergeben, als es z.B. nötig ist, eine neue Greengrass Version einzusetzen oder die Firmware des Edge-Devices zu aktualisieren, ist hiermit zumindest schon einmal ein großer Teil der Deployments von Änderungen an der Software sehr einfach möglich.

Firmware und Betriebssystemupdates

Was ist aber mit dem ganzen Rest: Updates von Greengrass selbst, das Betriebssystem, sonstige Systemkomponenten, wie Treiber, Bibliotheken, usw.?
Auch diese Teile des Systems müssen regelmäßig aktualisiert werden!
Um dies zu ermöglichen, ist ein Edge-Device mit einer zuverlässigen Gesamtarchitektur notwendig. Das bedeutet, das es möglich sein muss, die Basis Softwarekomponenten upzudaten, ohne hier im Urschleim der Linux Paketverwaltung herumzuwühlen.
Aus unserer Sicht hat HARTING hier mit der MICA Box ein hervorragendes Gesamtsystem gebaut, welches den Betreiber von diesen Arbeiten großenteils entlastet.
Was bedeutet das in der Praxis?
Bei der HARTING MICA stellt der Hersteller das Basissystem (Linux) sowie diverse Funktionscontainer zur Verfügung. Das Besondere dabei ist der Umstand, dass alle vom Hersteller gelieferten Container mit einer Web-Socket Schnittstelle ausgestattet sind. Damit wird es einem ermöglicht, sehr einfache die Container zu Verwalten und zu Konfigurieren.
Auf diese Weise ist es mit sehr geringem Aufwand möglich, über den von SIC! Software verfügbaren Greengrass Container alle anderen Container auf der MICA und das Betriebssystem selbst über einige wenige API-Aufrufe vollständig zu steuern. Der Greengrass Container ist der Master und somit in der Lage, neue Container zu installieren, bestehende Upzudaten, etc.
Ohne die Bereitstellung dieser Basisfunktionalität von HARTING müsste der geneigte Nutzer das alles selbst in die Hand nehmen. Insbesondere das Update der Basissoftware eines Edge-Device, wie der MICA, ist ohne diese Vorarbeiten nur mit erheblichem Entwicklungsaufwand zu bewerkstelligen.
Um dies zu gewährleisten greift Harting hier auf Container zurück.
Allerdings setzt man hier aufgrund der nur geringen Hardware-Ressourcen, die in der Regel auf einem Edge-Device zur Verfügung stehen, nicht auf Technologien wie Docker oder Podman, sondern verwendet die Basis-Technologie LXC.
Mit Containern kann man alle diese Abhängigkeiten als ein einzelnes Image zur Verfügung stellen, dass mit wenig Handgriffen installiert bzw. aktualisiert werden kann.
Nachdem nun die Application(s) sowie das Image über eine CD-Pipeline ausgerollt werden können, bleibt noch die Aktualisierung des Host-OS bzw. der Firmware selbst.
Hier gilt es ein Edge-Device auszuwählen, das per Netzwerk aktualisiert werden kann.
Integrieren wir nun unseren Management-Dienst mit AWS Greengrass, erhalten wir einen zentralen Management-Hub in der Cloud, der alle Teilbereiche unseres Edge-Devices verwaltet – von Firmware über LXC-Container bis hin zur Greengrass Installation.
Und damit ist dann das Ziel eines jeden Systemadministrators erreicht: Ein transparenter, durchgängiger Prozess, um alle Ebenen der Software eines professionell eingesetzten Edge-Computing-Devices zu verwalten.

Fazit

Unter Verwendung der HARTING MICA und von AWS Greengrass lassen sich grundsätzlich alle Aspekte eines Edge-Devices zentral verwalten. Integrieren wir diese nun in einen Management-Dienst, erhalten wir einen zentralen Management-Hub, der alle Teilbereiche unseres Edge-Devices verwaltet – von Firmware über LXC-Container bis hin zur Greengrass Installation. Außerdem lassen sich so der Status und die Zustände aller Komponenten zentral überwachen, und im Falle von Problemen können diese schnell identifiziert werden oder sogar vor dem Eintreten erkannt und beseitigt werden.


Einige IoT Praxis-Beispiele für den Einsatz der der HARTING MICA mit AWS Greengrass finden Sie bei unseren IoT Case Studies.

Z.B. beim Technologiedemonstrator für vernetzte Ventilatoren, einem Projekt der Firma Rosenberg Ventilatoren:

 


Stehen Sie aktuell vor einer Edge Computing Herausforderung?

Gerne unterstützen unsere IoT Experten Sie bei Ihren Projekten und helfen Ihnen dabei, möglichst optimale Lösungen zu finden.

Sprechen Sie uns an: Kontakt

 


 

Eine kurze Einführung in das Paradigma der Serverless-Architekturen – am Beispiel der AWS Cloud


Da das Schlagwort „serverlose Technologien“ im Kontext der Cloud Nutzung immer wieder genannt wird, fragen Sie sich möglicherweise, was den „serverlos“ in der Praxis genau bedeutet.

Es ist allgemein bekannt, dass man keine Rechenleistung (Compute-Workload) ohne einen physisch vorhandenen Computer bzw. Server erbringen kann. Das führt zu der Frage, wie spiegelt sich dies in den verschiedenen Serverless-Technologien wie Docker, Kubernetes und Function-as-a-Service (FaaS) wider?

Beginnen wir damit warum man diese Technologien überhaupt als „serverless“ bezeichnet, wenn doch immer noch ein Server zur eigentlichen Ausführung benötigt wird?

Ohne Software geht es nicht

Im Grunde genommen ist es aber ganz einfach: Es kommt auf den Betrachtungswinkel an.

In einer klassischen IT-Umgebung würde man einen Server bereitstellen, seine Anwendung dort installieren und diese dann dort ausführen lassen. Dabei muss man natürlich dafür sorgen, dass alle technischen Abhängigkeiten der betreffenden Anwendung (wie z.B. Sprachbibliotheken, Datenbanken, Visualisierungstools, usw.) auf dem betreffenden Server installiert sind.

Wenn ein neues Release der Anwendung verfügbar ist oder man weitere Ressourcen benötigt, weil das System zum Beispiel mehr Rechenleistung erbringen soll, muss ein Entwickler oder Administrator auf den Server zugreifen und dort die betreffende Software installieren. Das kann zwar mit Tools wie Configuration-Management, Continous-Delivery-Pipelines, zentralisiertem Logging, usw. vereinfacht werden, aber am Ende des Tages muss immer eine Person, also ein Entwickler oder Administrator, zumindest etwas Kenntnis über den betreffenden Server und seine darauf installierten Anwendungen haben. Nur dann ist sie in der Lage, im Falle, dass es technische Probleme gibt, nach einer Lösung zu suchen und diese zu beheben.

Container

An diesem Punkt müssen wir einen kleinen Abstecher in das grundlegende Konzept von Serverless machen – den sogenannten „Container“.

Ein „Container“ ermöglicht es eine Anwendung inklusive der benötigten Systemumgebung auszuliefern. Dies macht es überflüssig, anwendungsspezifische Abhängigkeiten separat zu installieren, da sie bereits zusammen mit der Anwendung als Image ausgeliefert werden.
Und daraus resultiert auch der große Vorteil von Containern: Sie laufen praktisch überall.

Mit dem Begriff „Container“ ist übrigens nicht unbedingt nur ein „Docker Container“ gemeint, sondern auch der gute alte LXC Container (worauf Docker basiert) oder jede andere Container-Technologie.

Die Nutzung von Containern verschiebt die Verwaltung der Abhängigkeiten und die Bereitstellung der für die Ausführung der Anwendung erforderliche Umgebung vom Administrator des Servers hin zu den Entwicklern der Anwendung.

Ich bin mir sicher, dass auch Ihr Betriebsteam ein Mitspracherecht haben will und sollte. Im Wesentlichen ist dies der Punkt, an dem Sie eine DevOps-Kultur oder noch besser eine DevSecOps-Kultur benötigen.

Container können verwendet werden, ohne große Änderungen in der klassischen Umgebung umzusetzen. Es ändern sich lediglich ein paar Zuständigkeiten.

Geht man einen Schritt weiter bei der Verwendung von Serverless-Technologien, verschiebt sich die Interaktion zwischen Entwickler und Anwendung vom Server zu dem gewählten Orchestration-Tool (ich verwende für den Rest des Artikels Kubernetes als Beispiel, aber dasselbe gilt auch für andere Tools). Es gibt kein direktes Deployen von Anwendungen auf dem Server oder manuelle Konfiguration von Netzwerk-Komponenten, z.B. ein Load-Balancer. Man übergibt Kubernetes einfach eine neue Konfiguration und die neuste Version der Anwendung wird auf dem verfügbaren Server (Node) oder auf mehreren Servern (Nodes) ausgeliefert.

Doch hier sind sie ja schon wieder, diese verflixten Server!?!

Ohne Server geht es nicht

Die Verwaltung dieser Server häng davon ab ob man sein Kubernetes-Cluster On-Premise oder in der Cloud als Managed-Service betreibt. Das macht einen großen Unterschied, wenn es darum geht, sein Cluster zu verwalten.

Läuft es On-Premise, so muss man das Kubernetes-Cluster selbst verwalten und pflegen. Die Systemadministratoren müssen sich nicht länger mit dem Verwalten einzelner Anwendungen beschäftigen, sondern nur um das Cluster (oder mehrere Cluster) und alle dazugehörigen Server kümmern.

Wenn Kubernetes als Managed-Service in einer Cloud wie Amazon (AWS) Elastic Kubernetes Service (EKS), Google (GCP) Google Kubernetes Engine (GKE) oder Azure Kubernetes Service (AKS) läuft, reduziert sich der Verwaltungsaufwand aufgrund der automatischen Updates und des Betriebs der Master-Nodes durch den Provider drastisch. Das einzige, was von dem Prozess übrig bleibt, ist die Sicherheitskonfiguration der Umgebung.

In beiden Fällen hat man immer noch Zugriff auf die Server VM-Instanzen, auch wenn man einen Cloud-Service verwendet, da die Server als ganz normale virtuelle Maschinen bereitgestellt werden. Aber nachdem das Cluster eingerichtet ist, kann man nach Belieben Server zum Cluster hinzufügen und das Bereitstellen geschieht automatisch. In der On-Premise Variante kommt man um den normalen Verwaltungsprozess nicht herum.

Also hat man bei einem verwalteten Kubernetes-Service zwar immer noch Server aus denen der Cluster besteht und man verwaltet lediglich, wie stark automatisiert es skaliert, aber die Server muss man nicht direkt verwalten.

Somit sind wir schon ein wenig weiter mit unserer Erwartung an eine Serverless-Infrastruktur: Der Entwickler sieht den Server nicht mehr und man muss ihn auch nicht mehr verwalten.

Weg mit der Zuständigkeit

Aber können wir noch ein Stück weiter gehen und Server komplett aus unserer Zuständigkeit entfernen?

Ja, das können wir! Da jedoch das Rechnen ohne Computer / Server nicht möglich ist, ist dies nur durch Dienste möglich, bei denen die untergeordneten Rechenressourcen von jemand anderem verwaltet werden und entsprechend abstrahiert sind.

AWS bietet derzeit den Fargate-Service an, mit dem Sie Docker-Container ausführen können, ohne Compute-Instances (EC2) bereitzustellen, auf denen die Container ausgeführt werden. Dies bedeutet, dass Sie Ihre Docker-Container ausführen können, ohne jemals einen Server zu sehen oder zu verwalten. Es besteht auch die Möglichkeit, dass AWS in Kürze eine Option anbietet, dass EKS-Cluster von Fargate unterstützt werden (https://github.com/aws/containers-roadmap/issues/32). Dies würde bedeuten, dass auch Server (EC2-Instanzen) aus Ihrem EKS-Cluster wegfallen.

Eine andere Möglichkeit, die Server, die Sie mit Rechenleistung versorgen, vollständig loszuwerden, ist FaaS. AWS bietet den Dienst AWS Lambda an, in dem die Anwendung nur dann ausgeführt wird, wenn sie tatsächlich gebraucht wird. Der Service wird ausgeführt, wenn er ausgelöst wird. Wie eine Funktion ausgelöst werden kann, hängt von dem von Ihnen ausgewählten Cloud-Anbieter ab, da diese alle unterschiedliche Funktionsumfänge in diesem Bereich haben. Die Verwendung des systemeigenen Dienstes der Plattform für Nachrichtenwarteschlangen und HTTPs funktioniert mit allen Anbietern. FaaS führt Ihre Anwendung auch in einem Container aus – dies ist möglicherweise nicht direkt ersichtlich, wenn Sie die Dienste verwenden, da Sie kein Container-Image bereitstellen. Ihre Anwendung wird jedoch in einem Container ausgeführt, um sie zu isolieren. GCP bietet außerdem auch einen Dienst „Cloud Run“ an, welcher zwar Docker Container unterstützt aber aktuell nur über einen HTTPS Aufruf getriggert werden kann.

 

Fazit

Sie können nur dann wirklich „serverlos“ werden, wenn Sie Managed-Services von Cloud-Providern wie z.B. AWS verwenden, welche die Interaktion mit den Servern so weit abstrahieren, dass Sie diese nicht mehr direkt verwalten müssen.

Das bedeutet in der Regel, dass die Architektur einer Anwendung entsprechend ausgelegt werden muss. Ja, das macht zunächst ein wenig Arbeit, aber die gesparten Kosten sowohl bei der Administration der Anwendung als auch beim Betrieb in der Cloud machen sich erfahrungsgemäß recht schnell bezahlt.


Gerne beraten Sie unsere Spezialisten zum Thema Serverless mit AWS und unterstützen Sie bei Ihren IoT-Projekten.

Nehmen Sie Kontakt mit uns auf:

zum Kontaktformular


 


Auf der diesjährigen SPS 2019 vom 26. bis 28. November in Nürnberg präsentiert SIC! Software als Mitglied des MICA.networks auf dem HARTING Stand (Nr. 140) in Halle 10 Softwarelösungen für IoT und Industrie 4.0 mit dem Edge Computing System MICA. Die Messebesucher der SPS erfahren bei uns, welche konkreten Mehrwerte IoT-Anwendungen bieten, indem sie einerseits bestehende Prozesse verbessern und andererseits auch völlig neue Geschäftsbereiche eröffnen können. Auf dem HARTING Messestand zeigen wir in der MICA.network Partner Area an Beispielen auf, wie ein IoT-Projekt vom ersten Schritt bis zur ganzheitlichen Lösung aussehen kann.

Mit einem aufgestellten Ventilator der Rosenberg GmbH wird als Basis für die Optimierung des Energie-Managements die Überwachung von Stromverbräuchen demonstriert.

Außerdem wird die Leistungsfähigkeit einer Bilderkennung mittels AWS Machine Learning-Komponenten gezeigt.

Als einzigartiges Highlight bietet SIC! Software kostenfreie IoT-Mini-Workshops mit unseren Spezialisten direkt auf dem Messestand an. Mit Hilfe von Design Thinking-Methoden können hier erste Ideen, Anforderungen oder Fragestellungen hinsichtlich des Prozesses, der involvierten Systeme und der Akteure visualisiert werden. Interessenten erhalten somit eine fundierte Basis für die weitere Beurteilung und Bewertung.

Sie haben noch keine Eintrittskarte?
Sichern Sie sich Ihr kostenloses Ticket für die SPS 2019 und vereinbaren Sie einen Termin vor Ort:
Ihr Ansprechpartner: Bernd Potyka – Tel. 07131 13355-55 – E-Mail: bernd.potyka@sic.software 


 

Wenn die ersten Konzeptstudien eines IoT-Projektes das Entwicklungslabor verlassen und mit der industriellen Realität konfrontiert werden, geraten die vielfach eingesetzten populären Bastel-Platinen-Rechner wie Raspberry PI oder Beaglebone beim Einsatz als Edge Computing Device schnell an ihre Grenzen. Dann ist eine leistungsfähige, professionelle Hardwareplattform erforderlich.

Hier hat sich in unserem Hause in vielen IoT-Projekten im Industrieumfeld die HARTING MICA® (Modular Industry Computing Architecture) als kleines, leistungsfähiges Edge-Computing System überaus bewährt.

Der gesamte mechanische Aufbau ist sehr robust gestaltet. Egal ob Staub, Öl-Nebel oder feine Eisenspäne aus dem CNC-Bohrwerk – die MICA® Box erfüllt die Schutzklasse IP67 und lässt sich davon nicht beeindrucken. Ebenso genügen die an der MICA® Box verbauten Steckverbinder höchsten Ansprüchen an Lebensdauer und Kontaktsicherheit. Damit ist die MICA® Box ohne Einschränkungen industrietauglich.

HARTING MICA als IoT Edge Computing Device 01

Dem interessierten Leser möchten wir deshalb hier einen Einblick in das Innenleben dieses Edge-Computing Devices geben.

Merkmale der MICA® BOX

Zunächst ist die Harting MICA® BOX eine sehr unscheinbare kleine Box aus Aluminium die nach IP67 geprüft ist. Die Hardware des Systems ist mit einem 1 GHz ARM-Prozessor, 1 GB RAM und 4 GB eMMC Speicher ausgestattet. Zudem kann das System um bis zu weitere 32 GB Flash über eine Micro-SD-Karte nachgerüstet werden.

Als Betriebssystem kommt ein virtualisiertes, auf dem Kernel 3.2.X basierendes, LINUX zum Einsatz. Dies kann mit einer Vielzahl von weiteren Betriebssystem-Komponenten erweitert werden. Zu den Möglichkeiten, die hier auf der Softwareseite beim Einsatz als Edge Computing Device bestehen, folgt in Kürze ein weiterer Blog-Artikel.

Das Gehäuse

Die MICA® Box besitzt ein robustes Alu-Druckgussgehäuse aus einer Aluminum-Slilizium-Magnesium-Legierung (AlSi10Mg). Das gibt dem Gehäuse eine hohe mechanische Stabilität, gute thermische Eigenschaften als passiver Kühlkörper und ein geringes Gewicht.

Das mechanische Konzept der MICA® erlaubt die flexible, modulare Konfiguration mit verschiedenen Schnittstellen. Dabei ist stets die Schutzklasse IP67 erfüllt und die MICA® kann in einem Temperaturbereich von -25 Grad Celsius bis +75 Grad Celsius im Dauerbetrieb eingesetzt werden.

Die Rückwand der MICA® Box ist mit einer Gummidichtung versehen, ebenso alle Bohrungen und Durchlässe für Steckverbinder, LED usw.

Nach dem Entfernen der Schrauben kann die Rückwand abgenommen und der Kühlkörper mit den einzelnen Platinen herausgezogen werden.

Die Module der MICA® Box

Es folgt hier der Blick auf das modulare Platinen-Konzept der MICA® Box. Oben in der Mitte die zentrale Prozessor-Platine mit dem SD-Karten Halter. Links die I/O-Platine – in diesem Falle die Version mit zwei USB 2.0 Schnittstellen. Rechts die Stromversorgungs- und Netzwerkplatine mit LAN-POE-Anschluss und Streckverbindern für eine externe 24V Stromversorgung.

Der Prozessor der MICA® Box ist auf der Unterseite der CPU-Platine montiert. Die Kühlung erfolgt passiv über einen groß dimensionierten Alu-Kühlkörper.

Hier der Blick auf die CPU-Platine mit entfernten Schnittstellenmodulen.

Die Verbindung zwischen CPU Platine und den Schnittstellenmodulen erfolgt über einen Kontaktbügel mit leitfähigem Gummi. Damit ist die Verbindung elektrisch sehr sicher und gegen Vibration geschützt.

So entsteht eine kompakte Einheit von Kühlkörper, Platinen und Steckverbindern die in das Gehäuse eingeschoben wird.

Im Inneren des Gehäuses sorgen dann großzügig dimensionierte Auflageflächen für eine formschlüssige Verankerung der Elektronik im Inneren. Gleichzeitig wird der Kontaktbügel mit definierter Kraft auf die Platinen gedrückt und so eine vibrationssichere elektrische Verbindung der einzelnen Module im Inneren der MICA® Box garantiert.

Es ist dieser intelligente mechanische Aufbau, dem die Harting MICA® Box ihre Widerstandskraft im industriellen Umfeld verdankt.

Hier zum Schluß noch ein Blick auf alle Bauteile einer MICA® Box.

Zusammenfassung

Mit der Harting MICA® Box steht ein Edge-Computing Device mit einer sehr hohen Fertigungsqualität „Made in Germany“ zur Verfügung. Die längerfristige Verfügbarkeit ist durch die Firma HARTING garantiert.


Sie haben eine prototypische IoT Anwendung lauffähig und wollen diese jetzt im Feld erproben?

Sie wollen Sicherheit, dass Ihr wertvolles IoT-Projekt nicht wegen unzulänglicher Edge-Computing Hardware verzögert wird oder gar scheitert?

Dann sprechen Sie uns an.

Gemeinsam mit unseren IoT-Experten finden wir sicherlich einen Weg, Ihr bestehendes IoT-Pilotprojekt von simpler Labor-Hardware wie dem Raspberry Pi auf eine industrietaugliche Edge Computing Plattform wie die HARTING MICA® Box zu heben.

Herausforderungen bei IoT- und Smart Products Projekten

Heutzutage ist Embedded Software Entwicklung nicht mehr vergleichbar mit dem, was noch vor 10 Jahren Stand der Technik war. Die IoT-Produkte werden immer komplexer und die IoT-Hardware immer leistungsfähiger. Steigende Komplexität beim Embedded Software Design führt aber aber zwangsweise auch zu einer höheren Fehleranfälligkeit.

Gerade bei Smart Products ist aber die Robustheit des Embedded Software Designs ein ganz entscheidendes Kriterium. Denn die IoT-Devices müssen häufig über sehr lange Zeiträume laufen, haben aber kein User Interface, um das Gerät neu zu starten, wenn es mal hängt.

Mit klassischen Software-Entwicklungs-Methoden lässt sich aber die Komplexität bei der Entwicklung eines robusten Embedded Software Designs kaum mehr beherrschen. Zahlreiche von uns durchgeführte Code-Review-Projekte zeigen das immer wieder schmerzlich aufs Neue.

Doch wie erreicht man nun einen anderen Level bei der Embedded Software Entwicklung für Smart Products mit einem Real Time OS wie z.B. RTOS oder ThreadX?

 

Quality by Design: Das Standard Finite State Machine Framework

Das Zauberwort heißt hier: Event Driven Architecture. Durch den Einsatz eines Standard Finite State Machine Framework (http://www.state-machine.com/) erreicht man einen neuen Level an Stabilität und Robustheit im Embedded Software Design. Dabei geht die Architektur weg von klassischen Thread-Syncronisations-Methoden hin zu Event gesteuerten Programmabläufen.

Dieses Schaubild verdeutlich diesen Paradigmenwechsel sehr gut:

Embedded Software Design Paradigm Shift

http://embedded-computing.com/eletter-products/asynchronous-event-driven-architecture-for-high-reliability-systems/

Doch warum ist nun eine Event Driven Architecture so viel besser als „klassische“ Embedded Software Entwicklungs-Methoden?

Dafür gibt es zwei Gründe:

 1. Threads

Threads sind eine große Hilfe bei der Entwicklung komplexer Embedded Software. Allerdings gestaltet sich die Synchronisation und Kommunikation schwierig und erfordert vom Entwickler ein sehr hohes Maß and Disziplin, Erfahrung und Überblick über den Code. Mit wachsender Komplexität der Anwendung wird das Thread Handling aber immer anfälliger für Fehler. Die üblichen damit einhergehenden Probleme sind Race Conditions, Deadlocks, Performance Probleme, usw. Fehler in diesem Bereich sind in der Regel auch am schwersten zu finden und zu reproduzieren.

Um diese Probleme beim Embedded Software Design zu adressieren, hat man entsprechende Regeln für die Software Entwickler erdacht.

Siehe: https://herbsutter.com/2010/07/12/effective-concurrency-prefer-using-active-objects-instead-of-naked-threads/


  1. Don’t block inside your code. Instead communicate among threads asynchronously via event objects → This makes threads run truly independently, without blocking on each other
  2. Don’t share any data or resources among threads. Keep data and resources encapsulated inside threads (“share-nothing” principle) and instead use events to share information
  3. Organize your threads as “message pumps” (event queue + event loop)

Wenn man es schafft, diese Regeln konsequent umzusetzen, erhält man entsprechend robusten Embedded Software Code. Die Erfahrung zeigt aber, dass Menschen immer wieder Fehler machen bzw. sich aufgrund von Komplexität Fehler einschleichen.

Die Lösung:
Durch den Einsatz des Standard Finite State Machine Framework erzwinge ich die Einhaltung der oben genannten Regeln einfach durch eine Umkehr der Kontrolle. Das Framework sorgt mit dem Design dafür, dass die Spielregeln bei der Embedded Software Entwicklung eingehalten werden und ich kann als Entwickler keine solchen Fehler mehr einbauen.

 2. Spaghetti Code

In der Regel fängt alles immer ganz harmlos an und der Entwickler schreibt eine Methode, um Events zu verarbeiten. Mit der Zeit kommen jedoch immer mehr neue Events und immer komplexere Bedingungen hinzu. Die if-then-else Statements werden mehr und mehr und immer verschachtelter – bis zu dem Punkt, dass ein Außenstehender nicht mehr versteht, was eigentlich passiert. Dieses Problem lässt sich dann durch entsprechendes Refactoring zwar wieder eindämmen – besser wäre es aber, wenn es erst gar nicht entstehen kann.

Die Lösung:
Auch dafür sorgt das Standard Finite State Machine Framework, weil hier gänzlich anders an die Problemstellung heran gegangen werden muss. Das führt nachweislich zu besseren Ergebnissen bei der Entwicklung eines robusten Embedded Software Designs. Eine sehr schöne Beschreibung (englisch) gibt es hier:
https://www.state-machine.com/doc/Modern_Programming_Slides.pdf


Wenn auch Sie Probleme mit unzuverlässigem Embedded Software Code haben, sprechen Sie uns an! Unsere Spezialisten prüfen gerne gemeinsam mit Ihnen, wie ein Re-Design Ihrer Lösung aussehen kann. Sie profitieren dabei von unserem speziellen Architektur- und Entwicklungs-Know-how für robustes Embedded Software Design und der langjährigen Erfahrung aus zahlreichen IoT- und Smart Products Projekten.

Auch für die Entwicklung neuer Smart Products und in neuen IoT-Projekten hat sich diese Vorgehensweise mit dem Standard Finite State Machine Framework als sehr erfolgversprechend gezeigt.


Vielleicht auch interessant:

Das MQTT Protokoll – Hintergründe (Teil 1)

Das MQTT Protokoll – Praxis (Teil 2)

IoT Protokolle – MQTT vs. AMQP

MQTT Protokoll – Anwendungsbeispiele

Modbus über MQTT – wie geht das?

 

Mit dieser Serie von Blog-Artikeln werden wir einige grundlegende Gedanken zum Themenkomplex des „Internet of Things“ – auch kurz „IoT“ genannt – für Planer und Entscheider in mittelständischen Unternehmen zusammengefasst haben.

Wir wollen damit häufig gestellte Fragen beantworten und unseren Lesern einen Einstieg geben, um erste Gedanken zum Thema IoT für das jeweilige Unternehmen zu formulieren.


In einer kürzlich veröffentlichten Studie des IT-Dienstleisters HCL Technologies nannten 46 Prozent der befragten Projektverantwortlichen die Nutzung der richtigen IoT-Plattform als eine der größten Herausforderungen für das IoT-Projekt des Unternehmens.

Typischer Weise werden dabei die folgenden Anforderungen an die IoT-Plattform gestellt:

  • Quantitative Skalierbarkeit
  • Automatisierbarkeit
  • Offenheit, Schnittstellen
  • Technologische Reife der Plattform

Nun versucht das Unternehmen mit den bekannten Methodiken umfassend zu planen und so durch die Auswahl der „perfekten“ IoT-Plattform sein Projekt zum Erfolg zu führen.
Aber: Eine Digitalisierung nach Fahrplan gibt es nicht. Die Evaluation von IoT-Plattformen ist daher vielfach nur eine unnötige Geld- und Zeitverschwendung!

Warum ist das so? Weil eine Entscheidung pro oder Contra einer Plattform oftmals nur an kleinen technischen Detailfragen festgemacht wird, die zudem immer nur auf Basis des jeweils aktuellen Wissenstandes im Projekt erfolgen kann. Bei IoT-Projekten wird aber fast immer Neuland betreten. Die Anforderungen, Zielsetzungen, Use-Cases und Prioritäten ändern sich sehr schnell. Diese Änderungen sind aber unmöglich vorhersehbar. Alle Versuche, die möglichen Szenarien bei der Planung in Summe zu berücksichtigen, führen entweder zu einem Projekt mit gigantischen Kosten oder aber zu einer sehr langwierigen Planungsphase, die am Ende den Projektfortschritt sehr stark verlangsamt.

Unsere Empfehlung lautet daher:

Wählen Sie eine große, flexible Cloud-Plattform und fangen Sie einfach an. Denn während Ihr Wettbewerber noch überlegt, welche IoT-Plattform er nehmen soll, haben Sie schon den ersten Prof-of-Concept am Start und können echte Erfahrungen im Feld sammeln. Bei Umsetzung von IoT-Projekten lassen sich zwar viele technische Aufgaben im Zweifelsfall durch erhöhten Ressourceneinsatz beschleunigen, nicht aber das Sammeln von Erfahrungen im Feld! Wer hier zuerst kommt, mahlt zuerst und kann sich schnell einen Wettbewerbsvorteil sichern, der von der Konkurrenz nur schwer wieder aufgeholt werden kann.

Was ist wirklich wichtig bei der Plattformauswahl?

Über die Jahre haben sich folgende Parameter als wirklich strategisch relevant erwiesen:

  • Größe des Cloud-Anbieters
  • Flexibilität der Architektur und Ihrer Komponenten
  • schnelle Release-Zyklen der Cloud-Dienste

Warum eine große Plattform? Weil dieser Anbieter vermutlich auch in 24 Monaten noch existiert. Weil nur die großen Anbieter genügend in die kontinuierliche technologische Weiterentwicklung investieren können.

Warum Flexibilität? Weil nur damit die Chance besteht, dass auch Ihre künftigen Anforderungen erfüllt werden – und dies sowohl in technologischer als auch in funktionaler Hinsicht. Gerade der mögliche Einsatz verschiedener Technologien im Rahmen einer Microsystemarchitektur erleichtert und beschleunigt die Integration vorhandener Systeme ganz enorm.

Warum schnelle Release-Zyklen? Weil nur so die Chance besteht, dass in den verwendeten Cloud-Diensten die unvermeidlichen Kinderkrankheiten und Fehler schnell verschwinden, fehlende Funktionen in endlicher Zeit ergänzt werden.

Wenn Ihnen also ein Beratungsunternehmen als Einstieg in Ihr IoT-Projekt eine Studie für den Vergleich von 60 IoT-Plattformen empfiehlt, schicken Sie es nach Hause. Das Geld können Sie sinnvoller einsetzen.


Erwecken Sie Ihre Digitalisierungs-Idee zum Leben und präsentieren Sie sie LIVE vor Management, Kollegen und Kunden: IoT-Showcase-Angebot  


Warum hat sich SIC! Software bei IoT-Projekten auf die Cloud-Dienste von AWS fokussiert?

Die Gründe für AWS sind ganz einfach:

  • Großer internationaler Anbieter, der nicht vom Markt verschwinden wird
  • Transparentes Preismodell
  • Ausgereifte Infrastruktur, rationelle Administrationsmöglichkeiten
  • sehr breites Spektrum unterstützter Programmiersprachen
  • Kein erzwungener Technologischer Lock-In
  • Stabile SDKs und Bibliotheken, umfassende Dokumentation
  • Schnelle Release-Frequenz der Dienste
  • Breites MicroService Portfolio
  • Weltweite Hoch-Verfügbarkeit

Weil es sich bei Technologie-Integratoren wie bei einem 5-Sterne-Restaurant verhält: Wenn die Speisekarte zu groß ist, leidet die Qualität! Viel wichtiger ist die Kenntnis wie man mit den Zutaten das optimale Ergebnis erreicht. Daher gibt es in den Top-Gourment-Restaurants nur ein Menü auf der Speisekarte – genauso wie sich unser Top-Expertenteam auf einen flexiblen, leistungsfähigen und zukunftssicheren Technologiebaukasten fokussiert.


Wenn Sie lernen möchten, mit welchen Methodiken man die für die eigene IoT Anwendung strategisch relevanten Schlüsselkomponenten identifiziert, um die Kontrolle über seine Daten zu behalten, erfahren Sie in Folge 1 unserer Webinar-Reihe „IoT Projekt-Know-how für Planer und Entscheider“ mit dem Titel „Die Cloud als notwendige Basis für IoT-Lösungen – das AWS-Praxisbeispiel „tempmate“.

Infos & Anmeldung


Weitere Teile dieser Blog-Artikel Serie:

IoT Projekt-Know-how für Entscheider – Teil 1: Warum müssen wir in die Cloud?

IoT Projekt-Know-how für Entscheider – Teil 2: Warum sollen wir jetzt IoT Projekte starten?

IoT Projekt-Know-how für Entscheider – Teil 3: Warum sollen wir in eine eigene IoT Anwendung investieren?


Übrigens: Als integrativer Entwicklungsdienstleister für AWS (Amazon Web Services) Cloud-Lösungen bieten wir Ihnen ein fundiertes Know-How in den Themenfeldern Internet of Things (IoT), Smart Products und Industrie 4.0 und unterstützen Sie gerne auch bei Ihrem IoT-Projekt. … mehr 

 


 

Mit dieser Serie von Blog-Artikeln werden wir einige grundlegende Gedanken zum Themenkomplex des „Internet of Things“ – auch kurz „IoT“ genannt – für Planer und Entscheider in mittelständischen Unternehmen zusammengefasst haben.

Wir wollen damit häufig gestellte Fragen beantworten und unseren Lesern einen Einstieg geben, um erste Gedanken zum Thema IoT für das jeweilige Unternehmen zu formulieren.


„Es gibt doch jede Menge „fertiger“ IoT-Lösungen in der Cloud, an die wir ganz einfach unsere Maschinen anschließen können.“

Die Antwort hier ist ganz einfach: Damit klar ist, wem die von Ihren Maschinen und Sensoren erzeugten Daten gehören, ist eine eigene IoT Anwendung die bessere Lösung!

Alle Arten von Daten sind das Gold des 21 Jahrhunderts. Viele „öffentliche“ IoT Dienste vereinnahmen jedoch diese Daten und verkaufen die daraus gewonnenen Erkenntnisse an jedermann – möglicherweise sogar an Ihre direkte Konkurrenz.

„Aber die Vernetzung im IoT Umfeld lebt doch von der Weitergabe von Daten?“

Ja natürlich, eine IoT-Lösung ist ohne die Weitergabe von Daten in der Regel nur von sehr beschränktem Nutzen. Unabhängig davon ist es aber unverzichtbar, dass Sie es selbst kontrollieren können, wer Zugriff auf Ihre Daten erhält und wer nicht, wer die Daten auswerten und daraus lernen kann und wer nicht!

Diese strategisch relevante Kontrolle über Ihre Daten können Sie nur dann sicherstellen, wenn Sie an den Schlüsselstellen in der IoT-Datenschöpfungskette eigene IoT-Anwendungen / -Lösungen/ -Apps implementieren, die zu 100% unter Ihrer Kontrolle stehen.

Nur wenn Sie wissen, an welchen Stellen welche Daten entstehen, was man daraus an Erkenntnisse gewinnen kann ist können Sie „verstehen“ was Ihre Kunden an Daten brauchen. Das wiederum ermöglich es Ihnen, Ihr Produkt mit mehr Kundennutzen zu versehen – und am Ende möglicherweise auch neue Geschäftsmodelle für Ihr Unternehmen zu entwickeln.


Warum wir als Basis für Ihre eigene IoT-Anwendung Amazon Web Services (AWS) Cloud empfehlen, erfahren  Sie hier


Der schnelle Einsatz einer bestehenden IoT-Plattform statt des Aufwands einer eigenen IoT Anwendung ist natürlich sehr verlockend. Für nur ganz wenig Geld können Sie Ihre „intelligenten Maschinen“ auf diese Art und Weise ins Internet bringen. Und für einen ersten Showcase kann dies unter Umständen auch ein sinnvoller Weg sein. Wer aber strategisch und längerfristig denkt, der sollte hier sorgfältig prüfen, welche Konsequenzen solch eine Entscheidung haben kann.

Wenn Sie lernen möchten, mit welchen Methodiken man die für die eigene IoT Anwendung strategisch relevanten Schlüsselkomponenten identifiziert, um die Kontrolle über seine Daten zu behalten, erfahren Sie in Folge 1 unserer Webinar-Reihe „IoT Projekt-Know-how für Planer und Entscheider“ mit dem Titel „Die Cloud als notwendige Basis für IoT-Lösungen – das AWS-Praxisbeispiel „tempmate“.  Infos & Anmeldung


Weitere Teile dieser Blog-Artikel Serie:

IoT Projekt-Know-how für Entscheider – Teil 1: Warum müssen wir in die Cloud?

IoT Projekt-Know-how für Entscheider – Teil 2: Warum sollen wir jetzt IoT Projekte starten?


Übrigens: Als integrativer Entwicklungsdienstleister für AWS (Amazon Web Services) Cloud-Lösungen bieten wir Ihnen ein fundiertes Know-How in den Themenfeldern Internet of Things (IoT), Smart Products und Industrie 4.0 und unterstützen Sie gerne auch bei Ihrem IoT-Projekt. … mehr